【題目】選修4-4 坐標系與參數(shù)方程
在直角坐標系中,圓,曲線的參數(shù)方程為為參數(shù)),并以為極點, 軸正半軸為極軸建立極坐標系.
(1)寫出的極坐標方程,并將化為普通方程;
(2)若直線的極坐標方程為與相交于兩點,
求的面積(為圓的圓心).
科目:高中數(shù)學 來源: 題型:
【題目】已知圓與直線相切.
(1)若直線與圓交于兩點,求;
(2)設圓與軸的負半軸的交點為,過點作兩條斜率分別為的直線交圓于兩點,且,試證明直線恒過一定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中__________為真命題(把所有真命題的序號都填上).
①“”成立的必要條件是“”;
②“若成等差數(shù)列,則”的否命題;
③“已知數(shù)列的前項和為,若數(shù)列是等比數(shù)列,則成等比數(shù)列.”的逆否命題;
④“已知是上的單調(diào)函數(shù),若,則”的逆命題.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,點A(1,1),B(0,﹣2),C(4,2),D為AB的中點,DE∥BC. (Ⅰ)求BC邊上的高所在直線的方程;
(Ⅱ)求DE所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】教育學家分析發(fā)現(xiàn)加強語文樂隊理解訓練與提高數(shù)學應用題得分率有關,某校興趣小組為了驗證這個結論,從該校選擇甲乙兩個同軌班級進行試驗,其中甲班加強閱讀理解訓練,乙班常規(guī)教學無額外訓練,一段時間后進行數(shù)學應用題測試,統(tǒng)計數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)
(1)能夠據(jù)此判斷有97.5%把握熱內(nèi)加強語文閱讀訓練與提高數(shù)學應用題得分率有關?
(2)經(jīng)過多次測試后,小明正確解答一道數(shù)學應用題所用的時間在5—7分鐘,小剛正確解得一道數(shù)學應用題所用的時間在6—8分鐘,現(xiàn)小明、小剛同時獨立解答同一道數(shù)學應用題,求小剛比小明現(xiàn)正確解答完的概率;
(3)現(xiàn)從乙班成績優(yōu)秀的8名同學中任意抽取兩人,并對他們點答題情況進行全程研究,記A、B兩人中被抽到的人數(shù)為X,求X的分布列及數(shù)學期望E(X).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的一個焦點與的焦點重合,點在橢圓上.
(1)求橢圓的方程;
(2)設直線: ()與橢圓交于兩點,且以為對角線的菱形的一頂點為,求面積的最大值(為坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓過兩點, ,且圓心在直線上.
(Ⅰ)求圓的標準方程;
(Ⅱ)直線過點且與圓有兩個不同的交點, ,若直線的斜率大于0,求的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,是否存在直線使得弦的垂直平分線過點,若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com