【題目】剪紙藝術(shù)是最古老的中國(guó)民間藝術(shù)之一,作為一種鏤空藝術(shù),它能給人以視覺上以透空的感覺和藝術(shù)享受.在中國(guó)南北方的剪紙藝術(shù),通過一把剪刀、一張紙、就可以表達(dá)生活中的各種喜怒哀樂.如圖是一邊長(zhǎng)為1的正方形剪紙圖案,中間黑色大圓與正方形的內(nèi)切圓共圓心,圓與圓之間是相切的,且中間黑色大圓的半徑是黑色小圓半徑的2倍,若在正方形圖案上隨機(jī)取一點(diǎn),則該點(diǎn)取自白色區(qū)域的概率為(

A.B.C.D.

【答案】D

【解析】

先求出正方形中各個(gè)圓的半徑和面積,再求解概率,

由題意,正方形的內(nèi)切圓的半徑為,

設(shè)中間黑色的小圓的半徑為,則中間黑色的大圓的半徑為2.

所以,則,

即中間黑色的大圓的半徑為,中間黑色的小圓的半徑為.

所以白色的區(qū)域的面積為

則該點(diǎn)取自白色區(qū)域的概率為

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),下列個(gè)結(jié)論正確的是__________(把你認(rèn)為正確的答案全部寫上).

(1)任取,都有;

(2)函數(shù)上單調(diào)遞增;

(3),對(duì)一切恒成立;

(4)函數(shù)個(gè)零點(diǎn);

(5)若關(guān)于的方程有且只有兩個(gè)不同的實(shí)根,,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】試比較3-(n為正整數(shù))的大小,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費(fèi)者對(duì)手機(jī)流量的需求越來越大.長(zhǎng)沙某通信公司為了更好地滿足消費(fèi)者對(duì)流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了5個(gè)城市(總?cè)藬?shù)、經(jīng)濟(jì)發(fā)展情況、消費(fèi)能力等方面比較接近)采用不同的定價(jià)方案作為試點(diǎn),經(jīng)過一個(gè)月的統(tǒng)計(jì),發(fā)現(xiàn)該流量包的定價(jià):(單位:元/月)和購(gòu)買人數(shù)(單位:萬人)的關(guān)系如表:

(1)根據(jù)表中的數(shù)據(jù),求出關(guān)于的線性回歸方程

(2)若該通信公司在一個(gè)類似于試點(diǎn)的城市中將這款流量包的價(jià)格定位25元/ 月,請(qǐng)用所求回歸方程預(yù)測(cè)長(zhǎng)沙市一個(gè)月內(nèi)購(gòu)買該流量包的人數(shù)能否超過20 萬人.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為菱形,,平面,,為的中點(diǎn).

(Ⅰ) 求證: 平面

(Ⅱ) 求證:

(Ⅲ)若為線段上的點(diǎn),當(dāng)三棱錐的體積為時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式;

(3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列結(jié)論:

①若為真命題,則均為真命題;

②命題“若,則”的逆否命題是“若,則”;

③若命題,,則;

④“”是“”的充分不必要條件.其中正確的結(jié)論有____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當(dāng)a﹤0時(shí),證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校位同學(xué)的數(shù)學(xué)與英語(yǔ)成績(jī)?nèi)缦卤硭荆?/span>

學(xué)號(hào)

數(shù)學(xué)成績(jī)

英語(yǔ)成績(jī)

學(xué)號(hào)

數(shù)學(xué)成績(jī)

英語(yǔ)成績(jī)

將這位同學(xué)的兩科成績(jī)繪制成散點(diǎn)圖如下:

1)根據(jù)該校以往的經(jīng)驗(yàn),數(shù)學(xué)成績(jī)與英語(yǔ)成績(jī)線性相關(guān).已知這名學(xué)生的數(shù)學(xué)平均成績(jī)?yōu)?/span>,英語(yǔ)平均成績(jī)?yōu)?/span>.考試結(jié)束后學(xué)校經(jīng)過調(diào)查發(fā)現(xiàn)學(xué)號(hào)為同學(xué)與學(xué)號(hào)為同學(xué)(分別對(duì)應(yīng)散點(diǎn)圖中的、)在英語(yǔ)考試中作弊,故將兩位同學(xué)的兩科成績(jī)?nèi)∠,取消兩位作弊同學(xué)的兩科成績(jī)后,求其余同學(xué)的數(shù)學(xué)成績(jī)與英語(yǔ)成績(jī)的平均數(shù);

2)取消兩位作弊同學(xué)的兩科成績(jī)后,求數(shù)學(xué)成績(jī)與英語(yǔ)成績(jī)的線性回歸方程,并據(jù)此估計(jì)本次英語(yǔ)考試學(xué)號(hào)為的同學(xué)如果沒有作弊的英語(yǔ)成績(jī)(結(jié)果保留整數(shù)).

附:位同學(xué)的兩科成績(jī)的參考數(shù)據(jù):,.

參考公式:,.

查看答案和解析>>

同步練習(xí)冊(cè)答案