【題目】在平面直角坐標(biāo)系中,設(shè)點(diǎn),,(其中表示a、b中的較大數(shù))為、兩點(diǎn)的“切比雪夫距離”.
(1)若,Q為直線上動點(diǎn),求P、Q兩點(diǎn)“切比雪夫距離”的最小值;
(2)定點(diǎn),動點(diǎn)滿足,請求出P點(diǎn)所在的曲線所圍成圖形的面積.
【答案】(1);(2)
【解析】
(1)設(shè),可得,討論的大小,可得距離,再結(jié)合函數(shù)的性質(zhì)求最小值即可;
(2)運(yùn)用分段函數(shù)的形式求得,分析各段與不等式表示的平面區(qū)域的圖形,即可求得面積.
解:(1)設(shè),可得,
由,解得,即有,則當(dāng)時(shí),取最小值;
由,解得或,即有,即,
綜上可得:P、Q兩點(diǎn)“切比雪夫距離”的最小值為;
(2)由題意可得 ,
當(dāng),即有,
則圍成的圖形為關(guān)于點(diǎn)對稱的三角形區(qū)域,
當(dāng),即有,
則圍成的圖形為關(guān)于點(diǎn)對稱的三角形區(qū)域,
綜上可得,P點(diǎn)所在的曲線所圍成圖形為邊長為的正方形區(qū)域,則該區(qū)域面積為,
故P點(diǎn)所在的曲線所圍成圖形的面積為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)用函數(shù)單調(diào)性的定義證明函數(shù)在上是增函數(shù);
(3)對任意的,若不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列幾個(gè)命題:①“若p,則q”的否命題是“若,則”;②p是q的必要條件,r是q的充分不必要條件,則p是r的必要不充分條件;③若“”為真命題,則命題p,q中至多有一個(gè)為真命題;④過點(diǎn)的直線和圓相切的充要條件是直線斜率為.其中為真命題的有( )
A.①②B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個(gè)人才識技藝過人,這里的“六藝”其實(shí)源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚(yáng)中國傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)是橢圓上任意一點(diǎn),的最小值為,且該橢圓的離心率為.
(1)求橢圓的方程;
(2)若是橢圓上不同的兩點(diǎn),且,若,試問直線是否經(jīng)過一個(gè)定點(diǎn)?若經(jīng)過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不經(jīng)過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下面四個(gè)命題:
①“若,則或”的逆否命題為“若且,則”
②“”是“”的充分不必要條件
③命題存在,使得,則:任意,都有
④若且為假命題,則均為假命題,其中真命題個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問50名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動,得到如下的列聯(lián)表,由得
參照附表,得到的正確結(jié)論是
A. 有99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
B. 有99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”
C. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
D. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在ABC中,角A,B,C所對的邊分別為a,b,c,且asinAcosC+csinAcosA=c.
(1)若c=1,sinC=,求ABC的面積S;
(2)若D是AC的中點(diǎn),且cosB=,BD=,求ABC的三邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com