10.已知一個算法的程序框圖如圖所示,當輸出的結果為$\frac{1}{2}$時,則輸入的x值為( 。
A.$\sqrt{2}$B.1C.-1或$\sqrt{2}$D.-1或$\sqrt{10}$

分析 由程序框圖的功能和題意,當滿足條件x≤0時,2x=$\frac{1}{2}$,解得x=-1;不滿足條件x≤0時,y=lgx=$\frac{1}{2}$,解得x=$\sqrt{10}$,即可得解.

解答 解:輸出結果為$\frac{1}{2}$,有y=$\frac{1}{2}$,
由程序框圖可知,
當滿足條件x≤0時,y=2x=$\frac{1}{2}$,解得:x=-1;
當不滿足條件x≤0時,y=lgx=$\frac{1}{2}$,解得:x=$\sqrt{10}$,
綜上,有x=-1,或者$\sqrt{10}$.
故選:D.

點評 本題主要考察程序框圖和算法,考查了分類討論思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.已知過雙曲線$\frac{x^2}{4}$-y2=1的右焦點作直線l與雙曲線交于A,B兩點,若有且僅存在三條直線使得|AB|=a,則實數(shù)a的取值范圍為{4}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.《數(shù)學九章》中對已知三角形三邊長求三角形的面積的求法填補了我國傳統(tǒng)數(shù)學的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即S=$\sqrt{\frac{1}{4}[{c}^{2}{a}^{2}-(\frac{{c}^{2}+{a}^{2}-^{2}}{2})^{2}]}$.現(xiàn)有周長為2$\sqrt{2}$+$\sqrt{5}$的△ABC滿足sinA:sinB:sinC=($\sqrt{2}$-1):$\sqrt{5}$:($\sqrt{2}$+1),試用以上給出的公式求得△ABC的面積為( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{5}}{4}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在等差數(shù)列{an}中,若a22+2a2a8+a6a10=16,則a4a6=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.實驗測得五組(x,y)的值是(1,2)(2,4)(3,4)(4,7)(5,8),若線性回歸方程為$\stackrel{∧}{y}$=0.7x+$\stackrel{∧}{a}$,則$\stackrel{∧}{a}$的值是( 。
A.1.4B.1.9C.2.2D.2.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.若甲、乙、丙三組科研人員人數(shù)分別為12,18,m,現(xiàn)用分層抽樣方法從這三組人員中抽取n人組成一個科考隊,若在乙組中抽3人,丙組中抽4人,求m,n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)f(x)=$\frac{2}{si{n}^{2}x}$+$\frac{1}{co{s}^{2}x}$的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={-2,-1,0,1,2,3},集合B={x|-2≤x<2},則集合A∩B=( 。
A.{x|-2≤x<2}B.{x|-2≤x≤1}C.{-2,-1,0,1,2}D.{-2,-1,0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x),定義$F(f(x))=\left\{\begin{array}{l}1,x<f(x)\\ 0,x=f(x)\\-1,x>f(x).\end{array}\right.$
(Ⅰ)寫出函數(shù)F(2x-1)的解析式;
(Ⅱ)若F(|x-a|)+F(2x-1)=0,求實數(shù)a的值;
(Ⅲ)當$x∈[\frac{π}{3},\frac{4}{3}π]$時,求h(x)=cosx•F(x+sinx)的零點個數(shù)和值域.

查看答案和解析>>

同步練習冊答案