【題目】已知函數(shù)fx)=x2+1gx)=4x+1,的定義域都是集合A,函數(shù)fx)和gx)的值域分別為ST,

1)若A[1,2],求ST

2)若A[0,m]ST,求實數(shù)m的值

3)若對于集合A的任意一個數(shù)x的值都有fx)=gx),求集合A

【答案】1ST{5}.(2m43{0],或{4}{04}

【解析】

1)根據(jù)定義域,求得兩個函數(shù)的值域,再求交集即可;

2)根據(jù)函數(shù)單調(diào)性,得,解方程即可;

3)由題意,解方程fx)=gx)即可.

1)若A[1,2],

則函數(shù)fx)=x2+1的值域是S[25],

gx)=4x+1的值域T[59],

ST{5}

2)若A[0,m],則S[1m2+1],T[1,4m+1],

STm2+14m+1,

解得m4m0(舍去).

.

3)若對于A中的每一個x值,都有fx)=gx),

x2+14x+1,

x24x,

解得x4x0,

∴滿足題意的集合是{0],或{4}{04}

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定,,所對的邊分別是,,在所在平面作直線的某兩邊相交,沿折成一個空間圖形,將由分成的小三角形的不在上的頂點與另一部分的頂點連接,形成一個三棱錐或四棱錐。問:

(1)當(dāng)時,如何作,并折成何種錐體,才能使所得錐體體積最大?(需詳證)

(2)當(dāng)時,如何作,并折成何種錐體,才能使所得錐體體積最大?(敘述結(jié)果,不要證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組函數(shù)是同一函數(shù)的是(

;②;③;④。

A. ①② B. ①③ C. ③④ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:,并整理得到頻率分布直方圖(如圖所示).

)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間內(nèi)的人數(shù).

)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

P是曲線C1:(x-2)2+y2=4上的動點,以坐標(biāo)原點O為極點,x軸的正半軸為極軸

建立極坐標(biāo)系,將點P繞極點O逆時針90得到點Q,設(shè)點Q的軌跡為曲線C2.

求曲線C1,C2的極坐標(biāo)方程;

射線= (>0)與曲線C1,C2分別交于A,B兩點,定點M(2,0),MAB的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐P-ABCD,PC⊥平面ABCD,PC=2,在四邊形ABCD,∠B=∠C=90°,AB=4,CD=1,MPB,PB=4PM,PB與平面ABCD30°的角.

求證:(1)CM∥平面PAD.

(2)平面PAB⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過點P,過它的左、右焦點分別作直線l112.l1交橢圓于A.兩點,l2交橢圓于C,D兩點,

(1)求橢圓的標(biāo)準(zhǔn)方程.

(2)求四邊形ACBD的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】游樂場的摩天輪勻速旋轉(zhuǎn),其中心O距地面40.5m,半徑40m.若從最低點處登上座天輪,那么人與地面的距離將隨時間變化,5min后達(dá)到最高點,在你登上摩天輪時開始計時,

1)求出人與地面距離y與時間t的函數(shù)解析式;

2)從登上摩天輪到旋轉(zhuǎn)一周過程中,有多長時間人與地面距離大于20.5m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),且.

1)定義:對于函數(shù),若存在,使,則稱的一個不動點;

i)當(dāng)時,求函數(shù)的不動點;

ii)對任意實數(shù)b,函數(shù)恒有兩個相異的不動點,求a的取值范圍;

2)求的圖像在x軸上截得的線段長的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案