【題目】已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn)P,過(guò)它的左、右焦點(diǎn)分別作直線l112.l1交橢圓于A.兩點(diǎn),l2交橢圓于C,D兩點(diǎn),

(1)求橢圓的標(biāo)準(zhǔn)方程.

(2)求四邊形ACBD的面積S的取值范圍.

【答案】(1);(2)

【解析】

1)由題得關(guān)于的方程組,解方程組即得橢圓的標(biāo)準(zhǔn)方程;2)當(dāng)中有一條直線的斜率不存在,則另一條直線的斜率為0,求出此時(shí)四邊形的面積;若的斜率都存在,設(shè)的斜率為,則的斜率為.求出,再利用基本不等式求S的取值范圍.

(1)由,所以,

將點(diǎn)P的坐標(biāo)代入橢圓方程得

故所求橢圓方程為.

(2)當(dāng)中有一條直線的斜率不存在,則另一條直線的斜率為0,

此時(shí)四邊形的面積為,

的斜率都存在,設(shè)的斜率為,則的斜率為

直線的方程為,設(shè),,聯(lián)立,

消去整理得,

,

,

同理得,

所以

,

,

(當(dāng)且僅當(dāng)t=1時(shí)取到等號(hào))

綜上可知,四邊形面積的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某書店剛剛上市了《中國(guó)古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價(jià)進(jìn)行試銷,每種單價(jià)(元)試銷l天,得到如表單價(jià)(元)與銷量(冊(cè))數(shù)據(jù):

單價(jià)(元)

18

19

20

21

22

銷量(冊(cè))

61

56

50

48

45

(l)根據(jù)表中數(shù)據(jù),請(qǐng)建立關(guān)于的回歸直線方程:

(2)預(yù)計(jì)今后的銷售中,銷量(冊(cè))與單價(jià)(元)服從(l)中的回歸方程,已知每?jī)?cè)書的成本是12元,書店為了獲得最大利潤(rùn),該冊(cè)書的單價(jià)應(yīng)定為多少元?

附:,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCDABCD的棱長(zhǎng)為a,連接ACAD,AB,BD,BC,CD,得到一個(gè)三棱錐.求:

(1)三棱錐ABCD的表面積與正方體表面積的比值;

(2)三棱錐ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=x2+1,gx)=4x+1,的定義域都是集合A,函數(shù)fx)和gx)的值域分別為ST,

1)若A[12],求ST

2)若A[0,m]ST,求實(shí)數(shù)m的值

3)若對(duì)于集合A的任意一個(gè)數(shù)x的值都有fx)=gx),求集合A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù);

1)寫出函數(shù)的最小正周期;

2)請(qǐng)?jiān)谙旅娼o定的坐標(biāo)系上用五點(diǎn)法畫出函數(shù)在區(qū)間的簡(jiǎn)圖;

3)指出該函數(shù)的圖象可由的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】個(gè)人聚會(huì),已知:

(1)每個(gè)人至少同其中個(gè)人互相認(rèn)識(shí);

(2)對(duì)于其中任意個(gè)人,或者其中有2人相識(shí),或者余下的人中有2人相識(shí),證明:這個(gè)人中必有3人兩兩相識(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)雙曲線的兩支為(如圖),正三角形PQR的三頂點(diǎn)位于此雙曲線上。

(1)求證:P、Q、R不能都在雙曲線的同一支上;

(2)設(shè)P(-1,-1)上,Q、R上。求頂點(diǎn)Q、R的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的圖象與軸無(wú)交點(diǎn),求的取值范圍;

(2)若函數(shù)上存在零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)設(shè)關(guān)于的方程的兩個(gè)不等實(shí)根,求證:(其中為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案