【題目】已知函數(shù),;
(1)寫出函數(shù)的最小正周期;
(2)請?jiān)谙旅娼o定的坐標(biāo)系上用“五點(diǎn)法”畫出函數(shù)在區(qū)間的簡圖;
(3)指出該函數(shù)的圖象可由的圖象經(jīng)過怎樣的平移和伸縮變換得到?
【答案】(1);(2)圖像見詳解;(3)變換過程見詳解.
【解析】
(1)由最小正周期的公式即可求得;
(2)按照列表,描點(diǎn),連線的步驟,嚴(yán)格執(zhí)行即可畫出函數(shù)圖像;
(3)根據(jù)變換規(guī)則,以及函數(shù)解析式,寫出每一步和對應(yīng)解析式即可.
(1)
(2)列表如下
0 | π | 2π | |||
sin() | 0 | 1 | 0 | -1 | 0 |
y |
簡圖如下
(3)將y=sinx向左平移得到,
再保持縱坐標(biāo)不變,橫坐標(biāo)縮短為原為的得到,
最后再向上平移個(gè)單位得到
或?qū)?/span>y=sinx的圖象向上平移個(gè)單位得到的圖象,
再將所得圖象向左平移個(gè)單位得到的圖象,
再將所得圖象上的點(diǎn)的橫坐標(biāo)縮短到原為的倍(縱坐標(biāo)不變)
就得到的圖象.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求的值;
(2)若函數(shù),是否存在實(shí)數(shù)使得最小值為0,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓:.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知,圓與x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過點(diǎn)任作一條直線與圓:相交于兩點(diǎn)A,B.問:是否存在實(shí)數(shù)a,使得=?若存在,求出實(shí)數(shù)a的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
點(diǎn)P是曲線C1:(x-2)2+y2=4上的動點(diǎn),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸
建立極坐標(biāo)系,將點(diǎn)P繞極點(diǎn)O逆時(shí)針90得到點(diǎn)Q,設(shè)點(diǎn)Q的軌跡為曲線C2.
求曲線C1,C2的極坐標(biāo)方程;
射線= (>0)與曲線C1,C2分別交于A,B兩點(diǎn),定點(diǎn)M(2,0),求MAB的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點(diǎn)P,過它的左、右焦點(diǎn)分別作直線l1和12.l1交橢圓于A.兩點(diǎn),l2交橢圓于C,D兩點(diǎn), 且
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)求四邊形ACBD的面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)拋物線的焦點(diǎn)是雙曲線的右焦點(diǎn),拋物線的準(zhǔn)線與軸的交點(diǎn)為,若拋物線上存在一點(diǎn),且,則直線的方程為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為定義在R上的偶函數(shù),,且當(dāng)時(shí),單調(diào)遞增,則不等式的解集為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在矩形中,,,點(diǎn)是線段上靠近點(diǎn)的一個(gè)三等分點(diǎn),點(diǎn)是線段上的一個(gè)動點(diǎn),且.如圖,將沿折起至,使得平面平面.
(1)當(dāng)時(shí),求證:;
(2)是否存在,使得與平面所成的角的正弦值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com