11.將邊長(zhǎng)為2的等邊三角形以其一邊為軸旋轉(zhuǎn)一周,則形成的幾何體的表面積是4$\sqrt{3}$π.

分析 根據(jù)旋轉(zhuǎn)的平面圖形想象出所得旋轉(zhuǎn)體的結(jié)構(gòu)特征,再由平面圖形求出所得旋轉(zhuǎn)體的幾何元素的長(zhǎng)度,代入表面積進(jìn)行求解.

解答 解:如圖:繞邊AB所在的直線旋轉(zhuǎn)一周,得到兩個(gè)相同的圓錐,
∵等邊三角形△ABC的邊長(zhǎng)為2,
∴圓錐的高是1,底面半徑是$\sqrt{3}$,
∴該幾何體的表面積是2×$π×\sqrt{3}×2$=4$\sqrt{3}$π.
故答案為4$\sqrt{3}$π.

點(diǎn)評(píng) 本題的考點(diǎn)是旋轉(zhuǎn)體的表面積求法,關(guān)鍵是由平面圖形想象出所得旋轉(zhuǎn)體的結(jié)構(gòu)特征,再求出所得旋轉(zhuǎn)體的高以及其它長(zhǎng)度,考查了空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若?x∈[-2,3],使不等式2x-x2≥a成立,則實(shí)數(shù)a的取值范圍是a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若sin($\frac{π}{2}$+θ)=$\frac{3}{7}$,則cos2($\frac{π}{2}$-θ)=$\frac{40}{49}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)等比數(shù)列{an}的前項(xiàng)n和Sn,a2=$\frac{1}{8}$,且S1+$\frac{1}{16}$,S2,S3成等差數(shù)列,數(shù)列{bn}滿足bn=2n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn=anbn,求數(shù)列{cn}的前項(xiàng)n和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.直線x-2y+4=0與直線3x-6y-5=0之間的距離為$\frac{17\sqrt{5}}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在區(qū)域$\left\{\begin{array}{l}x+y-2≤0\\ x-y+2≥0\\ y≥0\end{array}\right.$內(nèi)任取一點(diǎn)P,則點(diǎn)P落在單位圓x2+y2=2內(nèi)的概率為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線y+4=0與圓x2+y2-4x+2y-4=0的位置關(guān)系是( 。
A.相切B.相交,但直線不經(jīng)過圓心
C.相離D.相交且直線經(jīng)過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y+4≥0\\ x+y≥0\\ x≤0\end{array}\right.$,在此可行域中隨機(jī)選取x,y,則x+2y≤2的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,四棱錐S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),且SE=2EB.
(1)證明:DE⊥平面SBC;
(2)證明:求二面角A-DE-C的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案