求圓心在直線2x-y-3=0上,且過(guò)點(diǎn)A(5,2)和點(diǎn)B(3,2)的圓的方程.
考點(diǎn):圓的標(biāo)準(zhǔn)方程
專題:直線與圓
分析:設(shè)圓心的坐標(biāo)為C(a,2a-3),由|CA|=|CB|,求得a的值,可得圓心和半徑,從而求得所求的圓的方程.
解答: 解:設(shè)圓心的坐標(biāo)為C(a,2a-3),由點(diǎn)A(5,2)、點(diǎn)B(3,2),|CA|=|CB|,
可得 (a-5)2+(2a-3-2)2=(a-3)2+(2a-3-2)2,求得a=4,故圓心為(4,5),
半徑為CA=
10
,故所求的圓的方程為 (x-4)2+(y-5)2=10.
點(diǎn)評(píng):本題主要考查求圓的標(biāo)準(zhǔn)方程的方法,求出圓心坐標(biāo)和半徑的值,是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x、y滿足約束條件
x+y≤1
y≥x
x≥0
,則z=2x-y的最大值為( 。
A、0
B、2
C、3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=(x+1)2+2ln
1
x

(1)求f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=x2+x+a+1在區(qū)間[1,3]上恰好有兩個(gè)相異的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=-x(x-a)2(x∈R),其中a∈R.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)當(dāng)a=3時(shí),求函數(shù)f(x)的極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,且焦點(diǎn)F(2,0).
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)直線l過(guò)焦點(diǎn)F與拋物線C相交與M,N兩點(diǎn),且|MN|=16,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)g(x)=lnx+
1
x
的單調(diào)區(qū)間和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:kx-y+1+2k=0,求原點(diǎn)O到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知SA⊥平面ABC,SA=AB,AB⊥BC,SB=BC,E是SC的中點(diǎn),DE⊥SC交AC于D.
(1)求證:SC⊥面BDE;
(2)求二面角E-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x-a-1)ex+(b+1)x,g(x)=x2ex,a、b∈R.
(1)若b是函數(shù)g(x)的極大值點(diǎn),求b的值;
(2)在(1)的條件下,若函數(shù)f(x)在(0,+∞)內(nèi)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(3)若x1>0,x2>0,且x1≠x2,求證:
ex1-ex2
x1-x2
e
x1+x2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案