已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
解:(Ⅰ)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184950082410.gif" style="vertical-align:middle;" />………………………………………1分
 ……………………………………………3分
   …………………4分

為單調(diào)遞減函數(shù),
時(shí),;
時(shí),
遞增區(qū)間為;遞減區(qū)間為!6分
(Ⅱ)在條件下:恒成立
恒成立。 ………………………………8分
,設(shè)
 ……………………………10分
由(Ⅰ)知時(shí),,單調(diào)遞減
,即
的取值范圍為                    ………………………………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(理)已知函數(shù)f(x)=
(I)求證: <f()< (n∈N+
(II)如果對(duì)任何x≥0,都有f(x)≤ax,求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
從邊長(zhǎng)為2a的正方形鐵皮的四個(gè)角各截去一個(gè)邊長(zhǎng)為x的小正方形,再將四邊向上折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體鐵盒,且要求長(zhǎng)方體的高度x與底面正方形的邊長(zhǎng)的比不超過(guò)常數(shù)t.
問(wèn):(1)求長(zhǎng)方體的容積V關(guān)于x的函數(shù)表達(dá)式;(2)x取何值時(shí),長(zhǎng)方體的容積V有最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

使函數(shù)上取最大值的x為(  )
A.0B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)在點(diǎn)(1,1)處的切線方程為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)
求曲線和直線所圍成的平面圖形繞軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在極
坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以軸正半軸為極軸)中,圓C的方程為
①求圓C的直角坐標(biāo)方程;
②設(shè)圓C與直線交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為,求|PA|+|PB|。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線相切于點(diǎn)(2,3),則k的值為(    ).
A. 5B. 6 C. 4D. 9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分15分) 已知
(Ⅰ)當(dāng)t=1時(shí),求的單調(diào)區(qū)間
(Ⅱ)設(shè),的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案