【題目】已知函數(shù)為常數(shù), 為自然對(duì)數(shù)的底數(shù)),曲線在與軸的交點(diǎn)處的切線斜率為-1.

(1)求的值及函數(shù)的單調(diào)區(qū)間;

(2)證明:當(dāng)時(shí), ;

(3)證明:當(dāng)時(shí), .

【答案】(1), 在區(qū)間上單調(diào)遞減,在上單調(diào)遞增;(2)證明見解析;(3)證明見解析.

【解析】試題分析:(1)求出函數(shù)的f′(x)=ex﹣a.通過f′(x)=ex﹣20,即可求解函數(shù)f(x)在區(qū)間(﹣∞,ln2)上單調(diào)遞減,在(ln2,+∞)上單調(diào)遞增.

(2)求出f(x)的最小值,化簡(jiǎn)f(x)1﹣ln4.構(gòu)造g(x)=ex﹣x2﹣1,通過g′(x)0.判斷g(x)在(0,+∞)上單調(diào)遞增,得到g(x)g(0),推出結(jié)果.

3)首先證明:當(dāng)x0時(shí),恒有.令,則h′x=exx2.推出hx)在(0,+∞)上單調(diào)遞增,得到x+ln33lnx.利用累加法推出

試題解析:

(1)由,得

,所以.所以

,得

所以函數(shù)在區(qū)間上單調(diào)遞減,在上單調(diào)遞增.

(2)證明:由(1)知

所以,即

,則

所以上單調(diào)遞增,所以,即

(3)首先證明:當(dāng)時(shí),恒有

證明如下:令,則

由(2)知,當(dāng)時(shí), ,所以,所以上單調(diào)遞增,

所以,所以.所以,即.依次取,代入上式,則, ,

以上各式相加,有

所以

所以,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求函數(shù)的定義域和值域;

(Ⅱ)若函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列所給4個(gè)圖象中,與所給3件事吻合最好的順序?yàn)?( )

我離開學(xué)校不久,發(fā)現(xiàn)自己把作業(yè)本忘在教室,于是立刻返回教室里取了作業(yè)本再回家;

我放學(xué)回家騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間;

我放學(xué)從學(xué)校出發(fā)后,心情輕松,緩緩行進(jìn),后來為了趕時(shí)間開始加速.

A.(1)(2)(4)B.(4)(1)(2)C.(4)(1)(3)D.(4)(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽配廠生產(chǎn)某種零件,每個(gè)零件的出廠單價(jià)為60元,為了鼓勵(lì)更多銷售商訂購(gòu),該廠決定當(dāng)一次訂購(gòu)超過100個(gè)時(shí),每多訂購(gòu)一個(gè),訂購(gòu)的全部零件的出廠單價(jià)就降低元,但實(shí)際出廠單價(jià)不低于51元.

當(dāng)一次訂購(gòu)量最少為多少時(shí),零件的實(shí)際出廠單價(jià)恰好為51元?

設(shè)一次訂購(gòu)量為x個(gè),零件的實(shí)際出廠單價(jià)為p元,寫出函數(shù)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,一個(gè)頂點(diǎn),且右焦點(diǎn)到直線的距離為.

(1)求橢圓的方程.

(2)若點(diǎn)為橢圓的下頂點(diǎn),是否存在斜率為,且過定點(diǎn)的直線,使與橢圓交于不同兩點(diǎn),且滿足? 若存在,求直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),若存在區(qū)間,使得,則稱函數(shù)可等域函數(shù)”.區(qū)間為函數(shù)的一個(gè)可等域區(qū)間”.給出下列三個(gè)函數(shù):

;②;③;

則其中存在唯一可等域區(qū)間可等域函數(shù)的個(gè)數(shù)是(  

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

1)若關(guān)于的不等式上恒成立,求的取值范圍;

2)設(shè)函數(shù),上存在極值,求的取值范圍,并判斷極值的正負(fù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖.

(1)求圖中的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績(jī)的平均分;

(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件

B. p:,則

C. “若,則”的否命題是“若,則

D. 為假命題,則p,q均為假命題

查看答案和解析>>

同步練習(xí)冊(cè)答案