【題目】已知a,b,c分別是△ABC內(nèi)角A,B,C的對邊,函數(shù)f(x)=3+2sin xcos x+2cos2x且f(A)=5.
(1)求角A的大。
(2)若a=2,求△ABC面積的最大值.
【答案】(1) ;(2) .
【解析】試題分析:(1)先根據(jù)二倍角公式以及配角公式將函數(shù)化為基本三角函數(shù),再解簡單三角方程得角A(2)先根據(jù)余弦定理得4=b2+c2-bc,再利用基本不等式得bc最大值,根據(jù)三角形面積公式即得△ABC面積的最大值.
試題解析:(1)由題意可得:f(A)=3+2sin Acos A+2cos2A=5,
∴2sin Acos A=2(1-cos2A),
∴sin A(cos A-sin A)=0,
∵A∈(0,π),∴sin A≠0,
∴sin A=cos A,即tan A=,A=.
(2)由余弦定理可得:
4=b2+c2-2bccos,
4=b2+c2-bc≥bc(當且僅當b=c=2時“=”成立),
∴S△ABC=bcsin A=bc≤×4=,
故△ABC面積的最大值是.
科目:高中數(shù)學 來源: 題型:
【題目】“扶貧幫困”是中華民族的傳統(tǒng)美德,某校為幫扶困難同學,采用如下方式進行一次募捐:在不透明的箱子中放入大小均相同的白球七個,紅球三個,每位獻愛心的參與者投幣20元有一次摸獎機會,一次性從箱子中摸球三個(摸完球后將球放回),若有一個紅球,獎金10元,兩個紅球獎金20元,三個全是紅球獎金100元.
(1)求獻愛心參與者中將的概率;
(2)若該次募捐900位獻愛心參與者,求此次募捐所得善款的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),直線交橢圓E于A,B兩點,△ABF1的周長為16,△AF1F2的周長為12.
(1)求橢圓E的標準方程與離心率;
(2)若直線l與橢圓E交于C,D兩點,且P(2,2)是線段CD的中點,求直線l的一般方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,將曲線上的所有點橫坐標伸長為原來的倍,縱坐標伸長為原來的2倍后,得到曲線,在以為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程是.
(1)寫出曲線的參數(shù)方程和直線的直角坐標方程;
(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)是定義在上的單調(diào)函數(shù),且對于任意正數(shù)有,已知,若一個各項均為正數(shù)的數(shù)列滿足,其中是數(shù)列的前項和,則數(shù)列中第18項( )
A. B. 9 C. 18 D. 36
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: 的左焦點為F(-1,0),經(jīng)過點F的直線l0與橢圓交于A,B兩點.當直線l0⊥x軸時,|AB|=.
(1)求橢圓C的方程;
(2)作直線l⊥x軸,分別過A,B作AA1⊥l,垂足為A1,BB1⊥l,垂足為B1,且△A1FB1是直角三角形.問:是否存在直線l使得∠A1FO=2∠B1FO?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的首項a1=1,公差d>0.且a2,a5,a14分別是等比數(shù)列{bn}的b2,b3,b4.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)設數(shù)列{cn}對任意自然數(shù)n均有成立,求c1+c2+…+c2016的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某P2P平臺需要了解該平臺投資者的大致年齡分布,發(fā)現(xiàn)其投資者年齡大多集中在區(qū)間[20,50]歲之間,對區(qū)間[20,50]歲的人群隨機抽取20人進行了一次理財習慣調(diào)查,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
組數(shù) | 分組 | 人數(shù)(單位:人) |
第一組 | [20,25) | 2 |
第二組 | [25,30) | a |
第三組 | [30,35) | 5 |
第四組 | [35,40) | 4 |
第五組 | [40,45) | 3 |
第六組 | [45,50] | 2 |
(Ⅰ)求a的值并畫出頻率分布直方圖;
(Ⅱ)在統(tǒng)計表的第五與第六組的5人中,隨機選取2人,求這2人的年齡都小于45歲的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com