【題目】已知橢圓的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),直線交橢圓E于A,B兩點(diǎn),△ABF1的周長為16,△AF1F2的周長為12.
(1)求橢圓E的標(biāo)準(zhǔn)方程與離心率;
(2)若直線l與橢圓E交于C,D兩點(diǎn),且P(2,2)是線段CD的中點(diǎn),求直線l的一般方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C: ,過點(diǎn)的直線l的參數(shù)方程為: (t為參數(shù)),直線l與曲線C分別交于M、N兩點(diǎn).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)若| PM |,| MN |,| PN |成等比數(shù)列,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“雙十一”期間,某淘寶店主對其商品的上架時間(分鐘)和銷售量(件)的關(guān)系作了統(tǒng)計,得到如下數(shù)據(jù):
經(jīng)計算: , , , .
(1)該店主通過作散點(diǎn)圖,發(fā)現(xiàn)上架時間與銷售量線性相關(guān),請你幫助店主求出上架時間與銷售量的線性回歸方程(保留三位小數(shù)),并預(yù)測商品上架1000分鐘時的銷售量;
(2)從這11組數(shù)據(jù)中任選2組,設(shè)且的數(shù)據(jù)組數(shù)為,求的分布列與數(shù)學(xué)期望.
附:線性回歸方程公式: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=ln x,g(x)=x|x|.
(1)求g(x)在x=-1處的切線方程;
(2)令F(x)=x·f(x)-g(x),求F(x)的單調(diào)區(qū)間;
(3)若任意x1,x2∈[1,+∞)且x1>x2,都有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域為,如果, ,使(為常數(shù))成立,則稱函數(shù)在上的均值為.給出下列四個函數(shù):①;②;③;④.則其中滿足在其定義域上均值為2的函數(shù)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“雙十一”期間,某淘寶店主對其商品的上架時間(分鐘)和銷售量(件)的關(guān)系作了統(tǒng)計,得到如下數(shù)據(jù):
經(jīng)計算: , , , .
(1)從滿足的數(shù)據(jù)中任取兩個,求所得兩個數(shù)據(jù)都滿足的概率;
(2)該店主通過作散點(diǎn)圖,發(fā)現(xiàn)上架時間與銷售量線性相關(guān),請你幫助店主求出上架時間與銷售量的線性回歸方程(保留三位小數(shù)),并預(yù)測商品上架1000分鐘時的銷售量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)上購物逐步走進(jìn)大學(xué)生活,某大學(xué)學(xué)生宿舍4人積極參加網(wǎng)購,大家約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去哪家購物,擲出點(diǎn)數(shù)為5或6的人去淘寶網(wǎng)購物,擲出點(diǎn)數(shù)小于5的人去京東商城購物,且參加者必須從淘寶網(wǎng)和京東商城選擇一家購物.
(1)求這4個人中恰有2人去淘寶網(wǎng)購物的概率;
(2)求這4個人中去淘寶網(wǎng)購物的人數(shù)大于去京東商城購物的人數(shù)的概率:
(3)用X,Y分別表示這4個人中去淘寶網(wǎng)購物的人數(shù)和去京東商城購物的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別是△ABC內(nèi)角A,B,C的對邊,函數(shù)f(x)=3+2sin xcos x+2cos2x且f(A)=5.
(1)求角A的大小;
(2)若a=2,求△ABC面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com