【題目】“雙十一”期間,某淘寶店主對(duì)其商品的上架時(shí)間分鐘和銷(xiāo)售量的關(guān)系作了統(tǒng)計(jì),得到如下數(shù)據(jù):

經(jīng)計(jì)算: , , .

1)該店主通過(guò)作散點(diǎn)圖,發(fā)現(xiàn)上架時(shí)間與銷(xiāo)售量線(xiàn)性相關(guān),請(qǐng)你幫助店主求出上架時(shí)間與銷(xiāo)售量的線(xiàn)性回歸方程(保留三位小數(shù)),并預(yù)測(cè)商品上架1000分鐘時(shí)的銷(xiāo)售量;

(2)從這11組數(shù)據(jù)中任選2組,設(shè)的數(shù)據(jù)組數(shù)為的分布列與數(shù)學(xué)期望.

附:線(xiàn)性回歸方程公式: ,

【答案】(1) 預(yù)測(cè)商品上架1000分鐘時(shí)銷(xiāo)售量約為2157;(2) 的分布列為

=.

【解析】試題分析:1)根據(jù)題意,計(jì)算線(xiàn)性回歸系數(shù),寫(xiě)出線(xiàn)性回歸方程,即可預(yù)測(cè)商品上架1000分鐘時(shí)的銷(xiāo)售量;(2由(1)知, 的數(shù)據(jù)組數(shù)有6組,則的可能取值為0,1,2.由此能求出的分布列和.

試題解析:1)由題知: ===2.008,

==400-2.008125=149,

∴回歸直線(xiàn)方程為

當(dāng)時(shí),

故預(yù)測(cè)商品上架1000分鐘時(shí)銷(xiāo)售量約為2157.

2)由(1)知, 的數(shù)據(jù)組數(shù)有6組,所以的可能取值為0,1,2.

==, ==, ==

的分布列為

0

1

2

==.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)公差大于0的等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=15,且a1a4,a13成等比數(shù)列,記數(shù)列 的前n項(xiàng)和為Tn

(Ⅰ)求Tn;

(Ⅱ)若對(duì)于任意的nN*,tTnan+11恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某校九年級(jí)1 600名學(xué)生的體能情況,隨機(jī)抽查了部分學(xué)生,測(cè)試1分鐘仰臥起坐的成績(jī)(次數(shù)),將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖,根據(jù)直方圖的數(shù)據(jù),下列結(jié)論錯(cuò)誤的是(  )

A. 該校九年級(jí)學(xué)生1分鐘仰臥起坐的次數(shù)的中位數(shù)為26.25

B. 該校九年級(jí)學(xué)生1分鐘仰臥起坐的次數(shù)的眾數(shù)為27.5

C. 該校九年級(jí)學(xué)生1分鐘仰臥起坐的次數(shù)超過(guò)30次的約有320人

D. 該校九年級(jí)學(xué)生1分鐘仰臥起坐的次數(shù)少于20次的約有32人

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“扶貧幫困”是中華民族的傳統(tǒng)美德,某校為幫扶困難同學(xué),采用如下方式進(jìn)行一次募捐:在不透明的箱子中放入大小均相同的白球七個(gè),紅球三個(gè),每位獻(xiàn)愛(ài)心的參與者投幣20元有一次摸獎(jiǎng)機(jī)會(huì),一次性從箱子中摸球三個(gè)(摸完球后將球放回),若有一個(gè)紅球,獎(jiǎng)金10元,兩個(gè)紅球獎(jiǎng)金20元,三個(gè)全是紅球獎(jiǎng)金100元.

(1)求獻(xiàn)愛(ài)心參與者中將的概率;

(2)若該次募捐900位獻(xiàn)愛(ài)心參與者,求此次募捐所得善款的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓 的離心率為, 、為橢圓的左右頂點(diǎn),焦點(diǎn)到短軸端點(diǎn)的距離為2, 、為橢圓上異于的兩點(diǎn),且直線(xiàn)的斜率等于直線(xiàn)斜率的2倍.

(Ⅰ)求證:直線(xiàn)與直線(xiàn)的斜率乘積為定值;

(Ⅱ)求三角形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線(xiàn)生產(chǎn)某種化工產(chǎn)品,其生產(chǎn)的總成本(萬(wàn)元)與年產(chǎn)量(噸)之間的函數(shù)關(guān)系式可以近似的表示為,已知此生產(chǎn)線(xiàn)年產(chǎn)量最大為噸.

1)求年產(chǎn)量為多少?lài)崟r(shí),生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;

2)若每噸產(chǎn)品平均出廠價(jià)為40萬(wàn)元,那么當(dāng)年產(chǎn)量為多少?lài)崟r(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足an22cos2,nN*,等差數(shù)列{bn}滿(mǎn)足a12b1,a2b2.

(1)bn;

(2)cna2n1b2n1a2nb2n,求cn

(3)求數(shù)列{anbn}2n項(xiàng)和S2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),直線(xiàn)交橢圓E于A,B兩點(diǎn),△ABF1的周長(zhǎng)為16,△AF1F2的周長(zhǎng)為12.

(1)求橢圓E的標(biāo)準(zhǔn)方程與離心率;

(2)若直線(xiàn)l與橢圓E交于C,D兩點(diǎn),且P(2,2)是線(xiàn)段CD的中點(diǎn),求直線(xiàn)l的一般方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, 為等邊三角形,平面平面 , , 的中點(diǎn).

1求二面角的正弦值;

2平面,的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案