【題目】如圖, 表示神風(fēng)摩托車(chē)廠一天的銷(xiāo)售收入與摩托車(chē)銷(xiāo)售量的關(guān)系; 表示摩托車(chē)廠一天的銷(xiāo)售成本與銷(xiāo)售量的關(guān)系.

(1)寫(xiě)出銷(xiāo)售收入與銷(xiāo)售量之間的函數(shù)關(guān)系式;

(2)寫(xiě)出銷(xiāo)售成本與銷(xiāo)售量之間的函數(shù)關(guān)系式;

(3)當(dāng)一天的銷(xiāo)售量為多少輛時(shí),銷(xiāo)售收入等于銷(xiāo)售成本;

(4)當(dāng)一天的銷(xiāo)售超過(guò)多少輛時(shí),工廠才能獲利?(利潤(rùn)=收入-成本)

【答案】(1)y=x(2)y=(3)x=4(4)x>4

【解析】試題分析:解:(1)設(shè)y=kx,直線過(guò)(4,4)兩點(diǎn),∴4=4k,∴k=1∴y=x;

2)設(shè)y=kx+b直線過(guò)(0,2)、(44)兩點(diǎn),∴2=b,4=4k+2,∴k=,∴y=

3)由圖象知,當(dāng)x=4時(shí),銷(xiāo)售收入等于銷(xiāo)售成本,x=∴x=4;

4)由圖象知:當(dāng)x4時(shí),工廠才能獲利,即)>0時(shí),即x4時(shí),才能獲利

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)滿足約束條件.

(1)畫(huà)出不等式表示的平面區(qū)域,并求該平面區(qū)域的面積;

(2)若目標(biāo)函數(shù)的最大值為4,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)為圓的圓心, 是圓上動(dòng)點(diǎn),點(diǎn)在圓的半徑上,且有點(diǎn)上的點(diǎn),滿足

(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;

(2)若斜率為的直線與圓相切,與(1)中所求點(diǎn)的軌跡教育不同的兩點(diǎn) 是坐標(biāo)原點(diǎn),且時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)點(diǎn)的直線與圓相切,且與直線垂直,則( )

A. 2 B. 1 C. D.

【答案】A

【解析】因?yàn)辄c(diǎn)P(2,2)滿足圓的方程,所以P在圓上,

又過(guò)點(diǎn)P(2,2)的直線與圓相切,且與直線axy+1=0垂直,

所以切點(diǎn)與圓心連線與直線axy+1=0平行,

所以直線axy+1=0的斜率為: .

故選A.

點(diǎn)睛:對(duì)于直線和圓的位置關(guān)系的問(wèn)題,可用“代數(shù)法”或“幾何法”求解,直線與圓的位置關(guān)系體現(xiàn)了圓的幾何性質(zhì)和代數(shù)方法的結(jié)合,“代數(shù)法”與“幾何法”是從不同的方面和思路來(lái)判斷的,解題時(shí)不要單純依靠代數(shù)計(jì)算,若選用幾何法可使得解題過(guò)程既簡(jiǎn)單又不容易出錯(cuò).

型】單選題
結(jié)束】
23

【題目】設(shè)分別是雙曲線的左、右焦點(diǎn).若點(diǎn)在雙曲線上,且,則 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高二年級(jí)進(jìn)行了百科知識(shí)大賽,為了了解高二年級(jí)900名同學(xué)的比賽情況,現(xiàn)在甲、乙兩個(gè)班級(jí)各隨機(jī)抽取了10名同學(xué)的成績(jī),比賽成績(jī)滿分為100分,80分以上可獲得二等獎(jiǎng),90分以上可以獲得一等獎(jiǎng),已知抽取的兩個(gè)班學(xué)生的成績(jī)(單位:分)數(shù)據(jù)的莖葉圖如圖1所示:

(1)比較兩組數(shù)據(jù)的分散程度(只需要給出結(jié)論),并求出甲組數(shù)據(jù)的頻率分布直方圖如圖2中所示的值;

(2)現(xiàn)從兩組數(shù)據(jù)中獲獎(jiǎng)的學(xué)生里分別隨機(jī)抽取一人接受采訪,求被抽中的甲班學(xué)生成績(jī)高于乙班學(xué)生成績(jī)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校射擊隊(duì)的某一選手射擊一次,其命中環(huán)數(shù)的概率如表:

命中環(huán)數(shù)

10環(huán)

9環(huán)

8環(huán)

7環(huán)

概率

0.32

0.28

0.18

0.12

求該選手射擊一次,

(1)命中9環(huán)或10環(huán)的概率.

(2)至少命中8環(huán)的概率.

(3)命中不足8環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的多面體中, 平面, 平面, ,且, 的中點(diǎn).

Ⅰ)求證:

Ⅱ)求平面與平面所成的銳二面角的余弦值.

Ⅲ)在棱上是否存在一點(diǎn),使得直線與平面所成的角是.若存在,指出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓過(guò)兩點(diǎn), ,且圓心在直線

(Ⅰ)求圓的標(biāo)準(zhǔn)方程;

(Ⅱ)直線過(guò)點(diǎn)且與圓有兩個(gè)不同的交點(diǎn), ,若直線的斜率大于0,求的取值范圍;

(Ⅲ)在(Ⅱ)的條件下,是否存在直線使得弦的垂直平分線過(guò)點(diǎn),若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=a(x-5)2+6lnx,其中a∈R,曲線yf(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).

(1)確定a的值;

(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案