【題目】某校高二年級(jí)進(jìn)行了百科知識(shí)大賽,為了了解高二年級(jí)900名同學(xué)的比賽情況,現(xiàn)在甲、乙兩個(gè)班級(jí)各隨機(jī)抽取了10名同學(xué)的成績(jī),比賽成績(jī)滿分為100分,80分以上可獲得二等獎(jiǎng),90分以上可以獲得一等獎(jiǎng),已知抽取的兩個(gè)班學(xué)生的成績(jī)(單位:分)數(shù)據(jù)的莖葉圖如圖1所示:

(1)比較兩組數(shù)據(jù)的分散程度(只需要給出結(jié)論),并求出甲組數(shù)據(jù)的頻率分布直方圖如圖2中所示的值;

(2)現(xiàn)從兩組數(shù)據(jù)中獲獎(jiǎng)的學(xué)生里分別隨機(jī)抽取一人接受采訪,求被抽中的甲班學(xué)生成績(jī)高于乙班學(xué)生成績(jī)的概率.

【答案】(1)甲組數(shù)據(jù)更集中,乙組數(shù)據(jù)更分散, =0.05, =0.02, =0.01.(2)

【解析】試題分析:(1)根據(jù)數(shù)據(jù)集中程度確定分散程度,利用頻率等于頻數(shù)除以總數(shù)得對(duì)應(yīng)區(qū)間概率,再除以組距得值;(2)甲班獲獎(jiǎng)4人,乙班獲獎(jiǎng)5人,所以總事件數(shù)為,其中甲班學(xué)生成績(jī)高于乙班學(xué)生成績(jī)的事件數(shù)有9個(gè)(枚舉法),最后根據(jù)古典概型概率求法求概率

試題解析:(I)由莖葉圖可知,甲組數(shù)據(jù)更集中,乙組數(shù)據(jù)更分散=0.05, =0.02, =0.01.

(II)由莖葉圖知:甲班獲獎(jiǎng)4人,乙班獲獎(jiǎng)5人,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為實(shí)數(shù),函數(shù)

(1)若,求的取值范圍;

(2)討論的單調(diào)性;

(3)當(dāng)時(shí),討論在區(qū)間內(nèi)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,四邊形是菱形, ,又平面,

點(diǎn)是棱的中點(diǎn), 在棱上,且.

(1)證明:平面平面;

(2)若平面,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一幾何體的平面展開圖,其中ABCD為正方形,EF分別為PA,PD的中點(diǎn),

在此幾何體中,給出下面四個(gè)結(jié)論:

直線BE與直線CF異面; 直線BE與直線AF異面;

直線EF平面PBC; 平面BCE平面PAD.

其中正確的有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)的直線與圓相切,且與直線垂直,則( )

A. 2 B. 1 C. D.

【答案】A

【解析】因?yàn)辄c(diǎn)P(2,2)滿足圓的方程,所以P在圓上,

又過點(diǎn)P(2,2)的直線與圓相切,且與直線axy+1=0垂直,

所以切點(diǎn)與圓心連線與直線axy+1=0平行,

所以直線axy+1=0的斜率為: .

故選A.

點(diǎn)睛:對(duì)于直線和圓的位置關(guān)系的問題,可用“代數(shù)法”或“幾何法”求解,直線與圓的位置關(guān)系體現(xiàn)了圓的幾何性質(zhì)和代數(shù)方法的結(jié)合,“代數(shù)法”與“幾何法”是從不同的方面和思路來判斷的,解題時(shí)不要單純依靠代數(shù)計(jì)算,若選用幾何法可使得解題過程既簡(jiǎn)單又不容易出錯(cuò).

型】單選題
結(jié)束】
23

【題目】設(shè)分別是雙曲線的左、右焦點(diǎn).若點(diǎn)在雙曲線上,且,則 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 表示神風(fēng)摩托車廠一天的銷售收入與摩托車銷售量的關(guān)系; 表示摩托車廠一天的銷售成本與銷售量的關(guān)系.

(1)寫出銷售收入與銷售量之間的函數(shù)關(guān)系式;

(2)寫出銷售成本與銷售量之間的函數(shù)關(guān)系式;

(3)當(dāng)一天的銷售量為多少輛時(shí),銷售收入等于銷售成本;

(4)當(dāng)一天的銷售超過多少輛時(shí),工廠才能獲利?(利潤(rùn)=收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市政府為了節(jié)約生活用電,計(jì)劃在本市試行居民生活用電定額管理,即確定一個(gè)居民月用電量標(biāo)準(zhǔn),用電量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為此,政府調(diào)查了100戶居民的月平均用電量(單位:度),以, , , , 分組的頻率分布直方圖如圖所示.

(1)求直方圖中的值;

(2)求月平均用電量的眾數(shù)和中位數(shù);

(3)如果當(dāng)?shù)卣M?/span>左右的居民每月的用電量不超出標(biāo)準(zhǔn),根據(jù)樣本估計(jì)總體的思想,你認(rèn)為月用電量標(biāo)準(zhǔn)應(yīng)該定為多少合理?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,底面為正三角形, 底面, 的中點(diǎn).

(1)求證: 平面;

(2)求證:平面平面

3)在側(cè)棱上是否存在一點(diǎn),使得三棱錐的體積是?若存在,求出的長(zhǎng);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)A(01)且斜率為k的直線l與圓C(x2)2(y3)21交于M,N兩點(diǎn).

(1)k的取值范圍;

(2)12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

同步練習(xí)冊(cè)答案