【題目】如圖,三棱柱中,底面為正三角形, 底面, 的中點(diǎn).

(1)求證: 平面;

(2)求證:平面平面;

3)在側(cè)棱上是否存在一點(diǎn),使得三棱錐的體積是?若存在,求出的長;若不存在,說明理由.

【答案】(1)見解析;(2)見解析;(3)

【解析】試題分析:1連接于點(diǎn),連,由三角形中位線的性質(zhì)得,再根據(jù)線面平行的判定可得結(jié)論。(2)先證平面,再由面面垂直的判定定理可得平面平面。(3)假設(shè)存在點(diǎn)滿足題意,不妨設(shè),由可得,從而可得點(diǎn)確實(shí)存在,且。

試題解析

1如圖,連接于點(diǎn),連。

由題意知,在三棱柱中,平面,

∴四邊形為矩形,

∴點(diǎn)的中點(diǎn).

的中點(diǎn),

.

平面,平面.

平面.

2∵底面為正三角形,的中點(diǎn),

,

平面,平面,

.

,

平面,

平面,

∴平面平面.

3假設(shè)在側(cè)棱上存在一點(diǎn),使三棱錐的體積是.

設(shè)。

,,

,

,

解得,

.

,

∴ 在側(cè)棱上存在一點(diǎn),使得三棱錐的體積是,此時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.

(1)求該拋物線的方程;

(2)已知拋物線上一點(diǎn),過點(diǎn)作拋物線的兩條弦,且,判斷直線是否過定點(diǎn)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二年級進(jìn)行了百科知識大賽,為了了解高二年級900名同學(xué)的比賽情況,現(xiàn)在甲、乙兩個班級各隨機(jī)抽取了10名同學(xué)的成績,比賽成績滿分為100分,80分以上可獲得二等獎,90分以上可以獲得一等獎,已知抽取的兩個班學(xué)生的成績(單位:分)數(shù)據(jù)的莖葉圖如圖1所示:

(1)比較兩組數(shù)據(jù)的分散程度(只需要給出結(jié)論),并求出甲組數(shù)據(jù)的頻率分布直方圖如圖2中所示的值;

(2)現(xiàn)從兩組數(shù)據(jù)中獲獎的學(xué)生里分別隨機(jī)抽取一人接受采訪,求被抽中的甲班學(xué)生成績高于乙班學(xué)生成績的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體中, 平面, 平面, ,且 的中點(diǎn).

Ⅰ)求證:

Ⅱ)求平面與平面所成的銳二面角的余弦值.

Ⅲ)在棱上是否存在一點(diǎn),使得直線與平面所成的角是.若存在,指出點(diǎn)的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,其中是實(shí)數(shù).

1解關(guān)于的不等式

2)若,求關(guān)于的方程實(shí)根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓過兩點(diǎn) 且圓心在直線

(Ⅰ)求圓的標(biāo)準(zhǔn)方程;

(Ⅱ)直線過點(diǎn)且與圓有兩個不同的交點(diǎn), ,若直線的斜率大于0,求的取值范圍;

(Ⅲ)在(Ⅱ)的條件下,是否存在直線使得弦的垂直平分線過點(diǎn),若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在中,角的對邊分別是,且有.

1)求

(2)若,面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線過拋物線焦點(diǎn),且與拋物線交于 兩點(diǎn),以線段為直徑的圓與拋物線準(zhǔn)線的位置關(guān)系是( )

A. 相離 B. 相交 C. 相切 D. 不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形, , 是棱PD的中點(diǎn),且,

I)求證: ; Ⅱ)求二面角的大。

Ⅲ)若上一點(diǎn),且直線與平面成角的正弦值為,求的值.

查看答案和解析>>

同步練習(xí)冊答案