【題目】已知整數(shù)對(duì)按如圖規(guī)律排成,照此規(guī)律,則第68個(gè)數(shù)對(duì)是 .
【答案】(2,11)
【解析】解:觀察所給的有序?qū),可以看出?
整體上按橫縱坐標(biāo)的和從小到大排列,
如果和相同,按橫坐標(biāo)從小到大排列數(shù)對(duì),
而和為2的有(1,1),共1個(gè),和為3的有(1,2),(2,1)共2個(gè),和為4的有(1,3),(2,2),(3,1)共3個(gè),
所以當(dāng)排完和為n時(shí)共有 個(gè)數(shù)對(duì),
而 =66<68<78= ,
所以第68個(gè)數(shù)對(duì)的和為13,并且這個(gè)數(shù)對(duì)是和為13的第2個(gè)數(shù)對(duì),
所以第68個(gè)數(shù)對(duì)是(2,11).
所以答案是:(2,11).
【考點(diǎn)精析】關(guān)于本題考查的歸納推理,需要了解根據(jù)一類(lèi)事物的部分對(duì)象具有某種性質(zhì),退出這類(lèi)事物的所有對(duì)象都具有這種性質(zhì)的推理,叫做歸納推理才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)的焦點(diǎn)為,過(guò)點(diǎn)的直線(xiàn)交于兩點(diǎn),交軸于點(diǎn)到軸的距離比小.
(Ⅰ)求的方程;
(Ⅱ)若,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎(jiǎng)促銷(xiāo)活動(dòng),消費(fèi)每超過(guò)600元(含600元),均可抽獎(jiǎng)一次,抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種.
方案一:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,一次性摸出3個(gè)球,其中獎(jiǎng)規(guī)則為:若摸到3個(gè)紅球,享受免單優(yōu)惠;若摸出2個(gè)紅球則打6折,若摸出1個(gè)紅球,則打7折;若沒(méi)摸出紅球,則不打折.
方案二:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個(gè)顧客均分別消費(fèi)了600元,且均選擇抽獎(jiǎng)方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費(fèi)恰好滿(mǎn)1000元,試從概率的角度比較該顧客選擇哪一種抽獎(jiǎng)方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩名同學(xué)參加定點(diǎn)投籃測(cè)試,已知兩人投中的概率分別是和,假設(shè)兩人投籃結(jié)果相互沒(méi)有影響,每人各次投球是否投中也沒(méi)有影響.
(Ⅰ)若每人投球3次(必須投完),投中2次或2次以上,記為達(dá)標(biāo),求甲達(dá)標(biāo)的概率;
(Ⅱ)若每人有4次投球機(jī)會(huì),如果連續(xù)兩次投中,則記為達(dá)標(biāo).達(dá)標(biāo)或能斷定不達(dá)標(biāo),則終止投籃.記乙本次測(cè)試投球的次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若對(duì)于任意x∈R,都有f(x﹣2)≤f(x),則實(shí)數(shù)a的取值范圍是( )
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐S﹣ABCD,底面ABCD為菱形,SA⊥平面ABCD,∠ADC=60°,E,F(xiàn)分別是SC,BC的中點(diǎn).
(1)證明:SD⊥AF;
(2)若AB=2,SA=4,求二面角F﹣AE﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是(只填正確說(shuō)法序號(hào))
①若集合A={y|y=x﹣1},B={y|y=x2﹣1},則A∩B={(0,﹣1),(1,0)};
② 是函數(shù)解析式;
③ 是非奇非偶函數(shù);
④設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0),若f(x1)=f(x2)(x1≠x2),則f(x1+x2)=c.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com