【題目】已知在梯形中, 平面,且,點(diǎn)在上,且.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)連接交于點(diǎn),利用平幾知識可得,再根據(jù)相似比得.最后根據(jù)線面平行判定定理得平面.(2)求二面角大小,一般利用空間向量數(shù)量積:先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),列方程組求各平面法向量,利用向量數(shù)量積求兩法向量夾角,最后根據(jù)二面角與法向量夾角關(guān)系求二面角.
試題解析:解: (Ⅰ)連接交于點(diǎn),連接,如圖①所示.
∵,∴.
∵,∴,
∴.
∵平面平面,
∴平面.
(Ⅱ)設(shè)∵且平面,故以為原點(diǎn),過點(diǎn)與平行的直線為軸,
所在直線為軸, 所在直線為軸,建立空間直角坐標(biāo)系如圖②所示,則
.
由,得,得.
解得,即,
.
設(shè)是平面的一個法向量,則
令,則,即.
取的中點(diǎn),記為,連接,
易求得的坐標(biāo)為,
∴ .
由,得,
由底面,得,
又,∴平面.
∴是平面的一個法向量.
∴.
由圖可知二面角為銳二面角,
∴二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某一時間段車流量與PM2.5的數(shù)據(jù)如表:
時間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量x(萬輛) | 50 | 51 | 54 | 57 | 58 |
PM2.5的濃度y(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
(1)根據(jù)上表數(shù)據(jù),請?jiān)谌鐖D坐標(biāo)系中畫出散點(diǎn)圖;
(2)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程 ;(保留2位小數(shù))
(3)若周六同一時間段車流量是25萬輛,試根據(jù)(2)求出的線性回歸方程預(yù)測,此時PM2.5的濃度為多少(保留整數(shù))?
參考公式: = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】五一節(jié)期間,某商場為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動,活動規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券.(假定指針等可能地停在任一位置,指針落在區(qū)域的邊界時,重新轉(zhuǎn)一次)指針?biāo)诘膮^(qū)域及對應(yīng)的返劵金額見表.
例如:消費(fèi)218元,可轉(zhuǎn)動轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.
(1)已知顧客甲消費(fèi)后獲得n次轉(zhuǎn)動轉(zhuǎn)盤的機(jī)會,已知他每轉(zhuǎn)一次轉(zhuǎn)盤指針落在區(qū)域邊界的概率為p,每次轉(zhuǎn)動轉(zhuǎn)盤的結(jié)果相互獨(dú)立,設(shè)ξ為顧客甲轉(zhuǎn)動轉(zhuǎn)盤指針落在區(qū)域邊界的次數(shù),ξ的數(shù)學(xué)期望Eξ= ,方差Dξ= ,求n、p的值;
(2)顧客乙消費(fèi)280元,并按規(guī)則參與了活動,他獲得返券的金額記為η(元).求隨機(jī)變量η的分布列和數(shù)學(xué)期望.
指針位置 | A區(qū)域 | B區(qū)域 | C區(qū)域 |
返券金額(單位:元) | 60 | 30 | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2﹣a2x+3.
(1)若a=2,求f(x)在[﹣1,2]上的最值;
(2)若f(x)在(﹣ ,1)上是減函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線與圓交于, 兩點(diǎn).
(1)求圓的直角坐標(biāo)方程及弦的長;
(2)動點(diǎn)在圓上(不與, 重合),試求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線與圓交于, 兩點(diǎn).
(1)求圓的直角坐標(biāo)方程及弦的長;
(2)動點(diǎn)在圓上(不與, 重合),試求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域?yàn)镽的函數(shù)f(x)滿足f(x+2)=2f(x),當(dāng)x∈[0,2)時,f(x)= ,若x∈[﹣4,﹣2)時,f(x)≥ 恒成立,則實(shí)數(shù)t的取值范圍是( )
A.[﹣2,0)∪(0,1)
B.[﹣2,0)∪[1,+∞)
C.[﹣2,1]
D.(﹣∞,﹣2]∪(0,1]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com