5.函數(shù)f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},-1≤x<0\\ cosx,0≤x≤\frac{π}{2}\end{array}$的圖象與x軸圍成的封閉圖形的面積為( 。
A.$\frac{π}{4}$+1B.$\frac{5π}{4}$C.$\frac{5}{4}$D.π+1

分析 首先畫(huà)出函數(shù)圖象,明確f(x)與x軸圍成封閉圖形,利用定積分表示后就是即可.

解答 解:作出對(duì)應(yīng)的圖象如圖:
則對(duì)應(yīng)的區(qū)域面積S=$\frac{1}{4}$π+${∫}_{0}^{\frac{π}{2}}$cosxdx=$\frac{1}{4}$π+sinx|$\left.\begin{array}{l}{\frac{π}{2}}\\{0}\end{array}\right.$=$\frac{1}{4}$π+1,
故選:A.

點(diǎn)評(píng) 本題考查了封閉圖形的面積;利用定積分圖形的面積是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若b<a<0,則下列不等式一定成立的是( 。
A.a3<b3B.ab>b2C.ac2>bc2D.$\frac{1}{a}$<$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,正四棱錐S-ABCD中.SA=AB=2,E、F、G分別為BC、SC、DC的中點(diǎn),設(shè)P為線(xiàn)段FG上任意一點(diǎn).
(1)求證:EP⊥AC;
(2)試探究當(dāng)點(diǎn)P在線(xiàn)段FG的何位置時(shí)使得直線(xiàn)BP與平面EFG所成的角取到最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)在y軸上的一個(gè)頂點(diǎn)為M,兩個(gè)焦點(diǎn)分別是F1,F(xiàn)2,∠F1MF2=120°,△MF1F2的面積為$\sqrt{3}$.
(1)求橢圓G的方程;
(2)過(guò)橢圓G長(zhǎng)軸上的點(diǎn)P(t,0)的直線(xiàn)l與橢圓O:x2+y2=1相切于點(diǎn)Q(Q與P不重合),交橢圓G于A,B兩點(diǎn),若|AQ|=|BP|,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=ax3+bx2+cx,其導(dǎo)函數(shù)為f′(x)的部分值如表所示:
x-3-201348
f'(x)-24-10680-10-90
根據(jù)表中數(shù)據(jù),回答下列問(wèn)題:
(Ⅰ)實(shí)數(shù)c的值為6;當(dāng)x=3時(shí),f(x)取得極大值(將答案填寫(xiě)在橫線(xiàn)上).
(Ⅱ)求實(shí)數(shù)a,b的值.
(Ⅲ)若f(x)在(m,m+2)上單調(diào)遞減,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖所示,在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1的面對(duì)角線(xiàn)A1B上存在一點(diǎn)P使得AP+D1P取得最小值,若此最小值為$2\sqrt{2+\sqrt{2}}$,則a的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若函數(shù)y=f(x)-g(x)在x∈[a,b]上有兩個(gè)不同的零點(diǎn),則稱(chēng)f(x)和g(x)在[a,b]上是“關(guān)聯(lián)函數(shù)”,區(qū)間[a,b]稱(chēng)為“關(guān)聯(lián)區(qū)間”.若f(x)=x2-3x+1與g(x)=x+m在[0,3]上是“關(guān)聯(lián)函數(shù)”,則m的取值范圍為( 。
A.(-3,+∞)B.(-3,-2]C.[-3,0]D.[-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.i為虛數(shù)單位,若($\sqrt{3}$+i)z=(1-$\sqrt{3}$i),則|z|=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若全集U={x∈N|1≤x≤7},集合A={1,2,3,5},B={2,3,4},則集合CUA∩CUB等于( 。
A.{ 2,3 }B.{ 1,5,6,7 }C.{ 6,7 }D.{ 1,5 }

查看答案和解析>>

同步練習(xí)冊(cè)答案