在極坐標系)中,直線被圓截得的弦的長是         

試題分析:將直線化為直角坐標方程為被圓y=x,將化為,其圓心為(0,1)半徑為1,所以直線被圓截得的弦的長是2 =
點評:小綜合題,通過將極坐標方程化為直角坐標方程,明確了圓心、半徑,從而利用“特征三角形”求得弦長。較為典型。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是:),則直線l與曲線C相交所成的弦的弦長為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在極坐標系中,曲線 與ρcosθ=-1 的交點的極坐標為________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在極坐標系中,與圓相切的一條直線方程為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,曲線的參數(shù)方程為,為參數(shù)),在以為極點,軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點對應的參數(shù),射線與曲線交于點
(I)求曲線,的方程;
(II)若點,在曲線上,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共10分)
在直角坐標系中直線L過原點O,傾斜角為,在極坐標系中(與直角坐標系有相同的長度單位,極點為原點,極軸與x的非負半軸重合)曲線C:
(1)求曲線C的直角坐標方程;
(2)直線L與曲線C交于點,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2個小題作答,滿分14分.如果多做,則按所做的前兩題記分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)(本小題滿分7分)選修4—2:矩陣與變換
在平面直角坐標系中,把矩陣確定的壓縮變換與矩陣確定的旋轉變換進行復合,得到復合變換
(Ⅰ)求復合變換的坐標變換公式;
(Ⅱ)求圓在復合變換的作用下所得曲線的方程.
(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),、分別為直線軸、軸的交點,線段的中點為
(Ⅰ)求直線的直角坐標方程;
(Ⅱ)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求點的極坐標和直線的極坐標方程.
(3)(本小題滿分7分)選修4—5:不等式選講
已知不等式的解集與關于的不等式的解集相等.
(Ⅰ)求實數(shù),的值;
(Ⅱ)求函數(shù)的最大值,以及取得最大值時的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(坐標系與參數(shù)方程)在極坐標系中,定點,動點在直線上運動,則線段的最短長度為   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設曲線的極坐標方程為,則其直角坐標方程為         .

查看答案和解析>>

同步練習冊答案