【題目】如圖,△ABC的頂點都在圓O上,點P在BC的延長線上,且PA與圓O切于點A.

(1)若∠ACB=70°,求∠BAP的度數(shù);
(2)若 = ,求 的值.

【答案】
(1)解:∵PA與圓O切于點A,

∴∠CAP=∠ABC,

∵∠ACP=∠ABC+∠BAC,

∴∠ACP=∠PAC+∠BAC=∠BAP,

∴∠ACB+∠BAP=∠ACB+∠ACP=180°,

∵∠ACB=70°,

∴∠BAP=110°


(2)解:∵PA與圓O切于點A,

∴∠CAP=∠ABC,

∵∠ACP=∠ABC+∠BAC,

∴∠ACP=∠PAC+∠BAC=∠BAP,

∴∠ACB+∠BAP=∠ACB+∠ACP=180°,

∵∠ACB=70°,

∴∠BAP=110°


【解析】(1)若∠ACB=70°,證明∠ACB+∠BAP=∠ACB+∠ACP=180°,即可求∠BAP的度數(shù);(2)證明△PAC∽△PBA,利用切割線定理,結(jié)合 = ,求 的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機(jī)一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結(jié)束.
(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;
(2)已知每檢測一件產(chǎn)品需要費用100元,設(shè)X表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求X的分布列和均值(數(shù)學(xué)期望)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】福利彩票“雙色球”中紅球的號碼可以從01,02,03,…,32,33這33個二位號碼中選取,小明利用如圖所示的隨機(jī)數(shù)表選取紅色球的6個號碼,選取方法是從第1行第9列和第10列的數(shù)字開始從左到右依次選取兩個數(shù)字,則第四個被選中的紅色球號碼為( )

81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85

06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49

A. 12 B. 33 C. 06 D. 16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】極坐標(biāo)系的極點為直角坐標(biāo)系的原點,極軸為x軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線C的極坐標(biāo)方程為ρ=2(cosθ+sinθ).
(1)求C的直角坐標(biāo)方程;
(2)直線l: 為參數(shù))與曲線C交于A,B兩點,與y軸交于E,求|EA|+|EB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|y= },B={x|x2﹣2x+1﹣m2≤0}.
(1)若m=3,求A∩B;
(2)若m>0,AB,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017重慶二診】“微信運動”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?

附: ,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設(shè),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x|x﹣a|,a∈R,g(x)=x2﹣1.
(1)當(dāng)a=1時,解不等式f(x)≥g(x);
(2)記函數(shù)f(x)在區(qū)間[0,2]上的最大值為F(a),求F(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形中, ,矩形所在的平面與平面垂直,且

(Ⅰ)求證:平面平面;

(Ⅱ)若為線段上一點,平面與平面所成的銳二面角為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運行如圖所示的程序框圖,若輸出的結(jié)果為 ,則判斷框內(nèi)可以填(

A.k>98?
B.k≥99?
C.k≥100?
D.k>101?

查看答案和解析>>

同步練習(xí)冊答案