已知橢圓C的中心在原點(diǎn),焦點(diǎn)F在x軸上,離心率e=
3
2
,點(diǎn)Q(
2
2
2
)
在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若斜率為k(k≠0)的直線n交橢圓C與A、B兩點(diǎn),且kOA、k、kOB成等差數(shù)列,點(diǎn)M(1,1),求S△ABM的最大值.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)設(shè)出橢圓方程,根據(jù)橢圓離心率e=
3
2
,點(diǎn)Q(
2
,
2
2
)
在橢圓C上,建立方程組,求解a2,b2,則橢圓的方程可求;
(2)確定直線n的方程為y=kx,代入橢圓方程,借助于弦長公式求出|AB|的長度,由點(diǎn)到直線的距離公式求出M到直線y=kx的距離,寫出三角形AOB的面積后轉(zhuǎn)化為含有k的代數(shù)式,利用導(dǎo)數(shù)法求最值.
解答: 解:(1)設(shè)橢圓方程為
x2
a2
+
y2
b2
=1
(a>b>0),則
∵橢圓離心率e=
3
2
,點(diǎn)Q(
2
2
2
)
在橢圓C上,
a2-b2
a
=
3
2
2
a2
+
1
2b2
=1

解得a=2,b=1,
∴橢圓方程為
x2
4
+y2=1
;
(2)設(shè)直線n的方程為y=kx+m,A(x1,y1),(x2,y2),則
∵kOA、k、kOB成等差數(shù)列,
∴m(x1+x2)=0,
∴m=0,
∴直線n的方程為y=kx
代入橢圓方程得(1+4k2)x2=4,
∴|AB|=
4
1+k2
1+4k2

∵M(jìn)到y(tǒng)=kx的距離為d=
|k-1|
k2+1

∴S=
1
2
4
1+k2
1+4k2
|k-1|
k2+1
=
2|k-1|
1+4k2

∴S2=
4(k-1)2
1+4k2
,
∴(S2)′=
8(k-1)(4k+1)
(1+4k2)2

∴k<-
1
4
,(S2)′>0,-
1
4
<k<1,(S2)′<0,k>1,(S2)′>0,
∴k=-
1
4
時,S取得最大值
5
點(diǎn)評:本題考查了橢圓的標(biāo)準(zhǔn)方程,考查了直線與圓錐曲線的關(guān)系,考查弦長問題、最值問題.屬難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知首項(xiàng)為
3
2
的等比數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),且-2S2,S3,4S4成等差數(shù)列,則數(shù)列{an}的通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=-2i,則
1
z+1
的虛部為(  )
A、
2
5
i
B、
2
5
C、
2
5
5
i
D、
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=9x+2•3x-2的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓過定點(diǎn)A(0,2),且在x軸上截得的弦長為4.
(1)求動圓圓心的軌跡C的方程;
(2)點(diǎn)P為軌跡C上任意一點(diǎn),直線l為軌跡C上在點(diǎn)P處的切線,直線l交直線:y=-1于點(diǎn)R,過點(diǎn)P作PQ⊥l交軌跡C于點(diǎn)Q,求△PQR的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項(xiàng)和為Sn,對任意正整數(shù)n都有6Sn=1-2an,記bn=log
1
2
an

(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若cn+1-cn=bn,c1=0,求證:對任意n≥2,n∈N*都有
1
c2
+
1
c3
+…+
1
cn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓心在x軸上,半徑為4的圓C位于y軸的右側(cè),且與y軸相切,
(Ⅰ)求圓C的方程;
(Ⅱ)若橢圓
x2
25
+
y2
b2
=1(b>0)
的離心率為
4
5
,且左右焦點(diǎn)為F1,F(xiàn)2,試探究在圓C上是否存在點(diǎn)P,使得△PF1F2為直角三角形?若存在,請指出共有幾個這樣的P點(diǎn)?并說明理由(不必具體求出這些點(diǎn)的坐標(biāo))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項(xiàng)和Sn=2n
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)令bn=nan.求{bn}的前10項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,是△AOB用斜二測畫法畫出的直觀圖,則△AOB的面積是
 

查看答案和解析>>

同步練習(xí)冊答案