【題目】一直函數(shù),其中
(1)討論的單調(diào)性
(2)設(shè)曲線與軸正半軸的交點為,曲線在點處的切線方程為,求證:對于任意的正實數(shù),都有
(3)若關(guān)于的方程(為實數(shù))有兩個正實根,求證:
【答案】
(1)
當(dāng)為奇數(shù)時,在上單調(diào)遞減,在內(nèi)單調(diào)遞增;當(dāng)為偶數(shù)時,在上單調(diào)遞增,在上單調(diào)遞減1
(2)
見解答
(3)
見解答
【解析】(1)由,可得,其中且,下面分兩種情況討論:當(dāng)為奇數(shù)時:令,解得或,當(dāng)變化時,的變化情況如下表:
x | (-,-1) | (-1,1) | (1,+) |
F’(x) | — | + | — |
F(x) |
所以,在上單調(diào)遞減,在內(nèi)單調(diào)遞增;當(dāng)為偶數(shù)時,當(dāng),即時,函數(shù)單調(diào)遞增;當(dāng),即時,函數(shù)單調(diào)遞減,所以,在上單調(diào)遞增,在上單調(diào)遞減
(2)證明:設(shè)點的坐標(biāo)為,則,曲線在點處的切線方程為,即,令,即,則由于在上單調(diào)遞增,故在上單調(diào)遞減,又因為,所以,當(dāng)時,,當(dāng)時,,所以在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,所以對任意的正實數(shù)都有,即對任意的正實數(shù),都有
(3)證明:不妨設(shè),由(2)知,設(shè)方程的根為,可得,當(dāng)時,在上單調(diào)遞減,又由(2)知,可得。類似的,設(shè)曲線在原點處的切線方程為,可得,當(dāng),,即對任意。設(shè)方程的根為,可得,因為在上單調(diào)遞增,且因此.由此可得,因為,所以,故,所以
【考點精析】認(rèn)真審題,首先需要了解導(dǎo)數(shù)的幾何意義(通過圖像,我們可以看出當(dāng)點趨近于時,直線與曲線相切.容易知道,割線的斜率是,當(dāng)點趨近于時,函數(shù)在處的導(dǎo)數(shù)就是切線PT的斜率k,即),還要掌握基本求導(dǎo)法則(若兩個函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo))的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·陜西)設(shè)fn(x)=x+x2+x...+xn-1, nN, n≥2。
(1)fn'(2)
(2)證明:fn(x)在(0,)內(nèi)有且僅有一個零點(記為an), 且0<an-<()n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時,解不等式;
(2)若關(guān)于的方程的解集中恰有一個元素,求的取值范圍;
(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐P-ABC中,PA平面ABC,
(1)(Ⅰ)求三棱錐P-ABC的體積;
(2)(Ⅱ)證明:在線段PC上存在點M,使得ACBM,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:,過點D(1,0)且不過點E(2,1)的直線與橢圓C交于A,B兩點,直線AE與直線x=3交于點M。
(1)(I)求橢圓C的離心率;
(2)(II)若AB垂直于x軸,求直線BM的斜率。
(3)(III)試判斷直線BM與直線DE的位置關(guān)系,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電子商務(wù)公司對10000名網(wǎng)絡(luò)購物者2014年度的消費情況進行統(tǒng)計,發(fā)現(xiàn)消費金額
(單位:萬元)都在區(qū)間內(nèi),其頻率分布直方圖如圖所示.
(Ⅰ)直方圖中的 ;
(Ⅱ)在這些購物者中,消費金額在區(qū)間內(nèi)的購物者的人數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
(2015·重慶)如題(21)圖,橢圓的左右焦點分別為且過的直線交橢圓于兩點,
且。
(1)若求橢圓的標(biāo)準(zhǔn)方程。
(2)若,且,試確定橢圓離心率的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·陜西)設(shè)某校新、老校區(qū)之間開車單程所需時間為T,T只與道路暢通狀況有關(guān),對其容量為100的樣本進行統(tǒng)計,結(jié)果如下:
T(分鐘) | 25 | 30 | 35 | 40 |
頻數(shù)(次) | 20 | 30 | 40 | 10 |
(1)求T的分布列與數(shù)學(xué)期望ET;
(2)劉教授駕車從老校區(qū)出發(fā),前往新校區(qū)做一個50分鐘的講座,結(jié)束后立即返回老校區(qū),求劉教授從離開老校區(qū)到返回老校區(qū)共用時間不超過120分鐘的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,記關(guān)于 的不等式 的解集為 .
(1)若 ,求實數(shù) 的取值范圍;
(2)若 ,求實數(shù) 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com