已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
,左焦點(diǎn)為E,右焦點(diǎn)為F,上頂點(diǎn)為B,若△BEF為等邊三角形,則此橢圓的離心率為( 。
A.
5
+1
2
B.
5
-1
2
C.
1
2
D.2-
3
依題意,作圖如下:

∵|EF|=2c,|BE|=
OE2+OB2
=
c2+b2
=a,△BEF為等邊三角形,|BE|=|EF|=2c,
∴離心率e=
c
a
=
1
2

故選:C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,左,右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)G在橢圓上,
GF1
GF2
,且△GF1F2的面積為3,則橢圓的方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知A,B,P為橢圓
x2
m2
+
y2
n2
=1(m,n>0)上不同的三點(diǎn),且A,B連線經(jīng)過坐標(biāo)原點(diǎn),若直線PA,PB的斜率乘積kPA•kPB=-2,則該橢圓的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知F1,F(xiàn)2是橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF2與圓x2+y2=b2相切于點(diǎn)Q,且點(diǎn)Q為線段PF2的中點(diǎn),則橢圓C的離心率為( 。
A.
3
2
B.
5
3
C.
6
3
D.
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知橢圓中心在原點(diǎn),F(xiàn)是焦點(diǎn),A為頂點(diǎn),準(zhǔn)線l交x軸于點(diǎn)B,點(diǎn)P,Q在橢圓上,且PD⊥l于D,QF⊥AO,則①
|PF|
|PD|
;②
|QF|
|BF|
;③
|AO|
|BO|
;④
|AF|
|AB|
;⑤
|FO|
|AO|
,其中比值為橢圓的離心率的有(  )
A.1個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的上頂點(diǎn)為A,左頂點(diǎn)為B,F(xiàn)為右焦點(diǎn),過F作平行與AB的直線交橢圓于C、D兩點(diǎn).作平行四邊形OCED,E恰在橢圓上.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若平行四邊形OCED的面積為
6
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓
x2
4
+
y2
3
=1,F(xiàn)1F2是它的兩個(gè)焦點(diǎn),P是這個(gè)橢圓上任意一點(diǎn),那么當(dāng)|PF1|•|PF2|取最大值時(shí),P、F1、F2三點(diǎn)(  )
A.共線
B.組成一個(gè)正三角形
C.組成一個(gè)等腰直角三角形
D.組成一個(gè)銳角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓
x2
16
+
y2
25
=1
上一點(diǎn)P到焦點(diǎn)F1的距離為6,則點(diǎn)P到另一個(gè)焦點(diǎn)F2的距離為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的兩個(gè)焦點(diǎn)分別為F1(0,-8),F(xiàn)2(0,8),且橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為20,則此橢圓的方程為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案