已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,左,右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)G在橢圓上,
GF1
GF2
,且△GF1F2的面積為3,則橢圓的方程為______.
由于橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,
c
a
=
3
2

又由左,右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)G在橢圓上,
|
GF1
|+|
GF2
|=2a

又由
GF1
GF2
,
GF12+GF22=4c2
1
2
×GF1×GF2=3

聯(lián)立方程解得:a=2
3
,c=3,
∴b2=a2-c2=3
∴橢圓C的方程為
x2
12
+
y2
3
=1

故答案為:
x2
12
+
y2
3
=1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知B、C是兩個(gè)定點(diǎn),|BC|=6,且△ABC的周長(zhǎng)等于16,則頂點(diǎn)A的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)A(-
3
,0)
,B是圓C:(x-
3
)2+y2=16
(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E.
(1)求動(dòng)點(diǎn)E的軌跡方程;
(2)設(shè)直線l:y=kx+m(k≠0,m>0)與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交橢圓E于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為( 。
A.
x2
45
+
y2
36
=1
B.
x2
36
+
y2
27
=1
C.
x2
27
+
y2
18
=1
D.
x2
18
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若方程
x2
25-k
+
y2
k-9
=1表示橢圓,則k的取值范圍是(  )
A.(9,17)B.(9,25)C.(9,17)∪(17,25)D.(-∞,9)∪(25,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,F(xiàn)1、F2分別為橢圓C的左、右焦點(diǎn),若橢圓C的焦距為2.
(1)求橢圓C的方程;
(2)設(shè)M為橢圓上任意一點(diǎn),以M為圓心,MF1為半徑作圓M,當(dāng)圓M與直線l:x=
a2
c
有公共點(diǎn)時(shí),求△MF1F2面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,F(xiàn)是中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓C的右焦點(diǎn),\直線l:x=4是橢圓C的右準(zhǔn)線,F(xiàn)到直線l的距離等于3.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上動(dòng)點(diǎn),PM⊥l,垂足為M.是否存在點(diǎn)P,使得△FPM為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若方程
x2
m-1
+
y2
3-m
=1
表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)m的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
,左焦點(diǎn)為E,右焦點(diǎn)為F,上頂點(diǎn)為B,若△BEF為等邊三角形,則此橢圓的離心率為( 。
A.
5
+1
2
B.
5
-1
2
C.
1
2
D.2-
3

查看答案和解析>>

同步練習(xí)冊(cè)答案