【題目】已知拋物線的焦點為,為坐標原點,過點的直線與交于、兩點.
(1)若直線與圓相切,求直線的方程;
(2)若直線與軸的交點為,且,,試探究:是否為定值.若為定值,求出該定值,若不為定值,試說明理由.
【答案】(1);(2)為定值.
【解析】
(1)對直線的斜率是否存在進行分類討論,由直線與圓相切,得出圓心到直線的距離等于半徑,進而可求得直線的方程;
(2)對直線的斜率是否存在進行分類討論,可知當直線的斜率不存在時不滿足題意,在直線的斜率存在時,設直線的方程為,與拋物線的方程聯(lián)立,列出韋達定理,利用向量的坐標運算得出關于、的表達式,代入韋達定理化簡計算可求得的值.
(1)由已知得.
當直線的斜率不存在時,直線的方程為,此時,直線與圓相交,不合乎題意;
當直線的斜率存在時,設直線的方程為,即,
由直線與圓相切,得,解得.
綜上所述,直線的方程為;
(2)當直線的斜率不存在時,直線的方程為,則直線與拋物線只有一個交點,不合乎題意;
當直線與軸不重合時,設直線的方程為,設、.
若,則直線與軸平行,不合乎題意,所以.
聯(lián)立,消去并整理得,由韋達定理得,
易知,由,得,
則,,同理可得,
所以,
所以為定值.
科目:高中數(shù)學 來源: 題型:
【題目】為徹底打贏脫貧攻堅戰(zhàn),2020年春,某市政府投入資金幫扶某農(nóng)戶種植蔬菜大棚脫貧致富,若該農(nóng)戶計劃種植冬瓜和茄子,總面積不超過15畝,幫扶資金不超過4萬元,冬瓜每畝產(chǎn)量10 000斤,成本2000元,每斤售價0.5元,茄子每畝產(chǎn)量5000斤,成本3000元,每斤售價1.4元,則該農(nóng)戶種植冬瓜和茄子利潤的最大值為( )
A.4萬元B.5.5萬元C.6.5萬元D.10萬元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某志愿者服務網(wǎng)站在線招募志愿者,當報名人數(shù)超過計劃招募人數(shù)時,將采用隨機抽取的方法招募志愿者,如表記錄了A,B,C,D四個項目最終的招募情況,其中有兩個數(shù)據(jù)模糊,記為a,b.
甲同學報名參加了這四個志愿者服務項目,記ξ為甲同學最終被招募的項目個數(shù),已知P(ξ=0),P(ξ=4).
(Ⅰ)求甲同學至多獲得三個項目招募的概率;
(Ⅱ)求a,b的值;
(Ⅲ)假設有十名報了項目A的志愿者(不包含甲)調整到項目D,試判斷Eξ如何變化(結論不要求證明).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的最大值為,其圖像相鄰的兩條對稱軸之間的距離為,且的圖像關于點對稱,則下列結論正確的是( ).
A.函數(shù)的圖像關于直線對稱
B.當時,函數(shù)的最小值為
C.若,則的值為
D.要得到函數(shù)的圖像,只需要將的圖像向右平移個單位
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓()的離心率是,點在短軸上,且。
(1)球橢圓的方程;
(2)設為坐標原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正四面體P-ABC的棱長均為a,O為正四面體P-ABC的外接球的球心,過點O作平行于底面ABC的平面截正四面體P-ABC,得到三棱錐P-A1B1C1和三棱臺ABC-A1B1C1,那么三棱錐P-A1B1C1的外接球的表面積為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某雜肉觀賞區(qū)改造建筑用地平面示意圖如圖所示、經(jīng)規(guī)劃調研確定,雜肉觀賞區(qū)改造規(guī)劃建筑用地區(qū)域是半徑為的圓,該圓面的內接四邊形是原雜肉觀賞區(qū)建筑用地,測量可知邊界千米,千米,千米.
(1)請計算原雜肉觀賞區(qū)建筑用地的面積及圓面的半徑的值;
(2)因地理條件的限制,邊界、不能變更,而邊界、可以調整,為了提高雜肉觀賞區(qū)觀賞的時長,請在圓弧上設計一點,使得雜肉觀賞區(qū)改造的新建筑用地的周長最大,并求最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】垃圾分類是對垃圾進行有效處置的一種科學管理方法,為了了解居民對垃圾分類的知曉率和參與率,引導居民積極行動,科學地進行垃圾分類,某小區(qū)隨機抽取年齡在區(qū)間上的50人進行調研,統(tǒng)計出年齡頻數(shù)分布及了解垃圾分類的人數(shù)如下表:
年齡 | ||||||
頻數(shù) | 5 | 10 | 10 | 15 | 5 | 5 |
了解 | 4 | 5 | 8 | 12 | 2 | 1 |
(1)填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為以65歲為分界點居民對了解垃圾分類的有關知識有差異;
年齡低于65歲的人數(shù) | 年齡不低于65歲的人數(shù) | 合計 | |
了解 | |||
不了解 | |||
合計 |
(2)若對年齡在,的被調研人中各隨機選取2人進行深入調研,記選中的4人中不了解垃圾分類的人數(shù)為X,求隨機變量X的分布列和數(shù)學期望
參考公式和數(shù)據(jù)
,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年雙十一落下帷幕,天貓交易額定格在268(單位:十億元)人民幣(下同),再創(chuàng)新高,比去年218(十億元)多了50(十億元).這些數(shù)字的背后,除了是消費者買買買的表現(xiàn),更是購物車里中國新消費的奇跡,為了研究歷年銷售額的變化趨勢,一機構統(tǒng)計了2010年到2019年天貓雙十一的銷售額數(shù)據(jù)y(單位:十億元),繪制如表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
編號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
銷售額y | 0.9 | 8.7 | 22.4 | 41 | 65 | 94 | 132.5 | 172.5 | 218 | 268 |
根據(jù)以上數(shù)據(jù)繪制散點圖,如圖所示
(1)根據(jù)散點圖判斷,與哪一個適宜作為銷售額關于的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結果及如表中的數(shù)據(jù),建立關于的回歸方程,并預測2020年天貓雙十一銷售額;(注:數(shù)據(jù)保留小數(shù)點后一位)
(3)把銷售超過100(十億元)的年份叫“暢銷年”,把銷售額超過200(十億元)的年份叫“狂歡年”,從2010年到2019年這十年的“暢銷年”中任取2個,求至少取到一個“狂歡年”的概率.
參考數(shù)據(jù):
參考公式:
對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com