【題目】垃圾分類是對垃圾進行有效處置的一種科學管理方法,為了了解居民對垃圾分類的知曉率和參與率,引導居民積極行動,科學地進行垃圾分類,某小區(qū)隨機抽取年齡在區(qū)間上的50人進行調(diào)研,統(tǒng)計出年齡頻數(shù)分布及了解垃圾分類的人數(shù)如下表:

年齡

頻數(shù)

5

10

10

15

5

5

了解

4

5

8

12

2

1

1)填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為以65歲為分界點居民對了解垃圾分類的有關知識有差異;

年齡低于65歲的人數(shù)

年齡不低于65歲的人數(shù)

合計

了解

不了解

合計

2)若對年齡在,的被調(diào)研人中各隨機選取2人進行深入調(diào)研,記選中的4人中不了解垃圾分類的人數(shù)為X,求隨機變量X的分布列和數(shù)學期望

參考公式和數(shù)據(jù)

,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)見解析,不能在犯錯誤的概率不超過0.01的前提下認為以65歲為分界點居民對了解垃圾分類的有關知識有差異. 2)見解析

【解析】

(1)根據(jù)年齡的頻數(shù)分布填寫列聯(lián)表,再計算分析即可.

(2)易得X的所有可能取值為0,1,23,再分別分情況求解分布列,再計算數(shù)學期望即可.

解:(12×2列聯(lián)表:

年齡低于65歲的人數(shù)

年齡不低于65歲的人數(shù)

合計

了解

32

不了解

18

合計

40

10

50

.

所以不能在犯錯誤的概率不超過0.01的前提下認為以65歲為分界點居民對了解垃圾分類的有關知識有差異.

2X的所有可能取值為0,12,3,

,,

,

X的分布列為

X

0

1

2

3

P

所以X的數(shù)學期望是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓Cab0)的焦距為2,且過點.

1)求橢圓C的方程;

2)已知△BMN是橢圓C的內(nèi)接三角形,若坐標原點O為△BMN的重心,求點O到直線MN距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,為坐標原點,過點的直線交于、兩點.

1)若直線與圓相切,求直線的方程;

2)若直線軸的交點為,且,試探究:是否為定值.若為定值,求出該定值,若不為定值,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在《周髀算經(jīng)》中,把圓及其內(nèi)接正方形稱為圓方圖,把正方形及其內(nèi)切圓稱為方圓圖.圓方圖和方圓圖在我國古代的設計和建筑領域有著廣泛的應用.山西應縣木塔是我國現(xiàn)存最古老、最高大的純木結(jié)構(gòu)樓閣式建筑,它的正面圖如圖所示.以該木塔底層的邊作方形,會發(fā)現(xiàn)塔的高度正好跟此對角線長度相等.以塔底座的邊作方形.作方圓圖,會發(fā)現(xiàn)方圓的切點正好位于塔身和塔頂?shù)姆纸?/span>.經(jīng)測量發(fā)現(xiàn),木塔底層的邊不少于米,塔頂到點的距離不超過米,則該木塔的高度可能是(參考數(shù)據(jù):)(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)寫出曲線的普通方程和曲線的直角坐標方程;

(2)已知點是曲線上的動點,求點到曲線的最小距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】金剛石是碳原子的一種結(jié)構(gòu)晶體,屬于面心立方晶胞(晶胞是構(gòu)成晶體的最基本的幾何單元),即碳原子處在立方體的個頂點,個面的中心,此外在立方體的對角線的處也有個碳原子,如圖所示(綠色球),碳原子都以共價鍵結(jié)合,原子排列的基本規(guī)律是每一個碳原子的周圍都有個按照正四面體分布的碳原子.設金剛石晶胞的棱長為,則正四面體的棱長為__________;正四面體的外接球的體積是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的對稱中心為原點,焦點在軸上,焦距為,點在該橢圓上.

(1)求橢圓的方程;

(2)直線與橢圓交于兩點,點位于第一象限,是橢圓上位于直線兩側(cè)的動點.當點運動時,滿足,問直線的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線y2=4x的焦點的直線l與拋物線交于A,B兩點,設點M3,0.若△MAB的面積為,則|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)g(x)=sinωx(ω0)向左平移個單位長度得到函數(shù)f(x),已知f(x)[0,2π]上有且只有5個零點,則下列結(jié)論正確的是(

A.f(x)的圖象關于直線對稱

B.f(x)(0,2π)上有且只有3個極大值點,f(x)(02π)上有且只有2個極小值點

C.f(x)上單調(diào)遞增

D.ω的取值范圍是[)

查看答案和解析>>

同步練習冊答案