已知向量
a
=(sinθ,
1
4
),
b
=(cosθ,1),
c
=(2,m)
滿足
a
b
(
a
+
b
)
c
,則實數(shù)m=
 
分析:由 
a
b
,可得
a
b
=cosθsinθ+
1
4
=0,求得sin2θ 的值; 據(jù) (
a
+
b
)
c
,得到 2×
5
4
=
m(sinθ+cosθ ),求出m2的值,即可得到 m的值.
解答:解:∵
a
b
,∴
a
b
=cosθsinθ+
1
4
=0,∴sin2θ=-
1
2

(
a
+
b
)
c
(
a
+
b
)
=(sinθ+cosθ,
5
4
),∴2×
5
4
=m(sinθ+cosθ ),
25
4
=m2(1+sin2θ),∴m2=
25
2
,m=±
5
2
2
,
故答案為:±
5
2
2
點評:本題考查兩個向量的數(shù)量積公式的應用,兩個向量垂直、平行的性質,求出 sin2θ=-
1
2
,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinθ,
3
)
,
b
=(1,cosθ)
,θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ;
(2)求|
a
+
b
|
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表達式.
(2)用“五點作圖法”畫出函數(shù)f(x)在一個周期上的圖象.
(3)寫出f(x)在[-π,π]上的單調遞減區(qū)間.
(4)設關于x的方程f(x)=m在x∈[-π,π]上的根為x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,則sin2θ+cos2θ的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinθ,1),
b
=(1,cosθ),θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ的值;
(2)若已知sinθ+cosθ=
2
sin(θ+
π
4
)
,利用此結論求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sin(x-
π
4
),-1)
,
b
=(2,2)
f(x)=
a
b
+2

①用“五點法”作出函數(shù)y=f(x)在長度為一個周期的閉區(qū)間的圖象.
②求函數(shù)f(x)的最小正周期和單調增區(qū)間;
③求函數(shù)f(x)的最大值,并求出取得最大值時自變量x的取值集合
④函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經過怎樣的變換得到?
⑤當x∈[0,π],求函數(shù)y=2sin(x-
π
4
)
的值域
解:(1)列表
(2)作圖
精英家教網

查看答案和解析>>

同步練習冊答案