已知函數(shù)f(x)=(2+a)x+a2lnx,g(x)=x2+2x+b(a,b∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)兩曲線y=f(x)與y=g(x)有公共點,且在公共點處的切線相同,若a>0,試建立b關(guān)于a的函數(shù)關(guān)系式,并求b的最小值;
(Ⅲ)設(shè)b=2a2+2a,若對任意給定的x0∈(0,1],總存在兩個不同的xi(i=1,2),使得g(xi)+f(x0)=0成立,求a的取值范圍.
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求出函數(shù)的定義域和導(dǎo)數(shù),根據(jù)函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系即可求f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義,即可建立b關(guān)于a的函數(shù)關(guān)系式,并求b的最小值;
(Ⅲ)求函數(shù)的導(dǎo)數(shù),根據(jù)存在兩個不同的xi(i=1,2),使得g(xi)+f(x0)=0成立,建立條件關(guān)系即可得到結(jié)論.
解答: 解:(Ⅰ)∵f(x)=2+a+
a2
x
,x>0
,
∴當(dāng)2+a≥0,即a≥-2時,f′(x)>0,f(x)的單調(diào)遞增區(qū)間是(0,+∞);
當(dāng)2+a<0,即a<-2時,f(x)的單調(diào)遞增區(qū)間是(0,-
a2
2+a
)
,
單調(diào)遞減區(qū)間是(-
a2
2+a
,+∞)

(Ⅱ)設(shè)兩曲線y=f(x)與y=g(x)的公共點為(x0,y0),
(2+a)x0+a2lnx0=x02+2x0+b
2+a+
a2
x0
=2x0+2.
消去x0,得b=a2lna.
b=2a(lna+
1
2
)
,
故b=a2lna在(0,
1
e
)
上遞減,在(
1
e
,+∞)
上遞增.
故b的最小值為-
1
2e

(III)當(dāng)x0∈(0,1]時,f(x)=2+a+
a2
x
≥2+a+a2>0
,
故f(x)在(0,1]上單調(diào)遞增,
∴f(x0)∈(-∞,2+a],-f(x0)∈[-2-a,+∞).
由題意得,函數(shù)g(x)的最小值b-1=2a2+2a-1<-2-a,
∴2a2+3a+1>0,
-1<a<-
1
2
點評:本題主要考查函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,以及導(dǎo)數(shù)的幾何意義,要求熟練掌握導(dǎo)數(shù)的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

棱長都是1的三棱錐的體積為(  )
A、
2
12
B、
3
12
C、
2
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,定義域為(0,+∞)的函數(shù)是( 。
A、y=ex
B、y=
1
lnx
C、y=
1
x
D、y=
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x-a
2x2+b
為R上的奇函數(shù)(a,b是常數(shù)),且函數(shù)f(x)的圖象過點(1,
1
3
).
(1)求f(x)的表達式;
(2)定義正數(shù)數(shù)列{an}:a1=
1
2
,an+12=2an•f(an),設(shè)bn=
1
an2
-2,求證:數(shù)列{bn}是等比數(shù)列;
(3)設(shè)數(shù)列{
n
an2
}的前n項和Sn,若Sn+
1
2n-2
-m>0對一切n∈N*恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E為棱CC1的中點.
(1)求證:BD⊥AE;
(2)求點A到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果定義在[0,1]上的函數(shù)f(x)滿足:若對任意x1,x2∈[0,1],且x1≠x2,都有|f(x1)-f(x2)|<|x1-x2|成立,則稱f(x)為“M函數(shù)”.
(Ⅰ)已知函數(shù)g(x)=
1
x+2
,x∈[0,1].判斷g(x)是否為“M函數(shù)”,并說明理由;
(Ⅱ)若h(x)為“M函數(shù)”,且h(0)=h(1),求證:對任意x1,x2∈[0,1],有|h(x1)-h(x2)|<
1
2
.(提示:|a+b|≤|a|+|b|,a,b∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項為正的數(shù)列{an}的前n項和為Sn,且滿足:2Sn=an•(an+1);數(shù)列{bn}滿足:bn-bn-1=an-1(n≥2,n∈N*),且b1=1.
(1)求an和bn;
(2)設(shè)Tn為數(shù)列{
1
bn+2n
}的前n項和,若Tn≤λan+1對一切n∈N*恒成立,求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}的前n項和為Sn,且a2=2,S3=7.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2an+1(n∈N*),數(shù)列{
1
bnbn+1
}的前n項和Tn,求證Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x+
1
2
x
n的展開式中前三項的系數(shù)成等差數(shù)列.
(1)求展開式中的有理項;    
(2)求展開式中系數(shù)最大的項.

查看答案和解析>>

同步練習(xí)冊答案