【題目】已知拋物線G:y2=2px(p>0),過焦點F的動直線l與拋物線交于A,B兩點,線段AB的中點為M.
(Ⅰ)當直線l的傾斜角為 時,|AB|=16.求拋物線G的方程;
(Ⅱ)對于(Ⅰ)問中的拋物線G,是否存在x軸上一定點N,使得|AB|﹣2|MN|為定值,若存在求出點N的坐標及定值,若不存在說明理由.

【答案】解:(Ⅰ)由題意知
設直線l的方程為 ,
得:y2﹣2pty﹣p2=0△=4p2t2+4p2>0,


當直線l傾斜角為 時,t=1,|AB|=4p=16,得p=4,
所以拋物線G的方程為y2=8x.
(Ⅱ)假設在x軸上存在點N(a,0)使得|AB|﹣2|MN|為定值.
由(Ⅰ)知|AB|=8(t2+1)
,yM=4t,
即M(4t2+2,4t)
若滿足題意 ,
解得a=3,k=1,
此時|AB|﹣2|MN|=6
綜上在x軸上存在點N(3,0)使得|AB|﹣2|MN|為定值6
注:其它做法酌情給分
【解析】(Ⅰ)設直線l的方程為 , ,聯(lián)立 ,利用韋達定理以及弦長公式求解拋物線G的方程.(2)假設在x軸上存在點N(a,0)使得|AB|﹣2|MN|為定值.由(Ⅰ)知|AB|=8(t2+1)求出M的坐標,求出|MN|的表達式,然后轉化求解在x軸上存在點N(3,0)使得|AB|﹣2|MN|為定值6.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,其左、右焦點分別為,點是坐標平面內一點,且, 為坐標原點).

(1)求橢圓的方程;

(2)過點且斜率為的動直線交橢圓于兩點,在軸上是否存在定點,使以為直徑的圓恒過該點?若存在,求出點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,△ABC的面積為S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,則cosA=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x2﹣ax(a>0,且a≠1),g(x)=f′(x)(其中f′(x)為f(x)的導函數(shù)).
(1)當a=e時,求g(x)的極大值點;
(2)討論f(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列共有四個命題: ⑴命題“ ”的否定是“x∈R,x2+1<3x”;
⑵在回歸分析中,相關指數(shù)R2為0.96的模型比R2為0.84的模型擬合效果好;
⑶a,b∈R, ,則p是q的充分不必要條件;
⑷已知冪函數(shù)f(x)=(m2﹣3m+3)xm為偶函數(shù),則f(﹣2)=4.
其中正確的序號為 . (寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)﹣1(ω>0,|φ|<π)的一個零點是 , 是y=f(x)的圖象的一條對稱軸,則ω取最小值時,f(x)的單調增區(qū)間是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學生社團在對本校學生學習方法開展問卷調查的過程中發(fā)現(xiàn),在回收上來的1000份有效問卷中,同學們背英語單詞的時間安排共有兩種:白天背和晚上臨睡前背.為研究背單詞時間安排對記憶效果的影響,該社團以5%的比例對這1000名學生按時間安排糞型進行分層抽樣,并完成一項實驗,實驗方法是,使兩組學生記憶40個無意義音節(jié)(如xIQ、GEH),均要求在剛能全部記清時就停止識記,并在8小時后進行記憶測驗.不同的是,甲組同學識記結束后一直不睡覺,8小時后測驗;乙組同學識記停止后立刻睡覺,8小時后叫醒測驗.兩組同學識記停止8小時后的準確回憶(保持)情況如圖(區(qū)間含左端點而不舍右端點)
(1)估計1000名被調查的學生中識記停止后8小時40個音節(jié)的保持率大于等于60%的人數(shù);
(2)從乙組準確回憶結束在|12,24)范圍內的學生中隨機選3人,記能準確回憶20個以上(含20)的人數(shù)為隨機變量x.求X分布列及數(shù)學期望;
(3)從本次實驗的結果來看,上述兩種時間安排方法中哪種方法背英語單詞記憶效果更好?計算并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2AD,E為邊AB的中點,將△ADE沿直線DE翻轉成△A1DE(A1平面ABCD),若M、O分別為線段A1C、DE的中點,則在△ADE翻轉過程中,下列說法錯誤的是(
A.與平面A1DE垂直的直線必與直線BM垂直
B.異面直線BM與A1E所成角是定值
C.一定存在某個位置,使DE⊥MO
D.三棱錐A1﹣ADE外接球半徑與棱AD的長之比為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若點P是曲線y=x2﹣lnx上任意一點,則點P到直線y=x﹣4的最小距離為

查看答案和解析>>

同步練習冊答案