【題目】“二進(jìn)制”來源于我國古代的《易經(jīng)》,該書中有兩類最基本的符號:“─”和“﹣﹣”,其中“─”在二進(jìn)制中記作“1”,“﹣﹣”在二進(jìn)制中記作“0”.如符號“”對應(yīng)的二進(jìn)制數(shù)011(2)化為十進(jìn)制的計算如下:011(2)=0×22+1×21+1×20=3(10).若從兩類符號中任取2個符號進(jìn)行排列,則得到的二進(jìn)制數(shù)所對應(yīng)的十進(jìn)制數(shù)大于2的概率為( )
A.B.C.D.
【答案】D
【解析】
分類計算得到從兩類符合中任取2個符號排列,則組成不同的十進(jìn)制數(shù)為0,1,2,3,即可計算得到概率.
根據(jù)題意,不同符號可分為三類:
第一類:由兩個“─”組成,其二進(jìn)制為:11(2)=3(10);
第二類:由兩個“﹣﹣“組成,其二進(jìn)制為:00(2)=0(10);
第三類:由一個“─”和一個“﹣﹣”組成,其二進(jìn)制為:10(2)=2(10),01(2)=1(10),
所以從兩類符號中任取2個符號排列,則組成不同的十進(jìn)制數(shù)為0,1,2,3,
則得到的二進(jìn)制數(shù)所對應(yīng)的十進(jìn)制數(shù)大于2的概率P.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】法國數(shù)學(xué)家龐加是個喜歡吃面包的人,他每天都會購買一個面包,面包師聲稱自己出售的每個面包的平均質(zhì)量是1000,上下浮動不超過50.這句話用數(shù)學(xué)語言來表達(dá)就是:每個面包的質(zhì)量服從期望為1000,標(biāo)準(zhǔn)差為50的正態(tài)分布.
(1)假設(shè)面包師的說法是真實(shí)的,從面包師出售的面包中任取兩個,記取出的兩個面包中質(zhì)量大于1000的個數(shù)為,求的分布列和數(shù)學(xué)期望;
(2)作為一個善于思考的數(shù)學(xué)家,龐加萊每天都會將買來的面包稱重并記錄,25天后,得到數(shù)據(jù)如下表,經(jīng)計算25個面包總質(zhì)量為24468.龐加萊購買的25個面包質(zhì)量的統(tǒng)計數(shù)據(jù)(單位:)
981 | 972 | 966 | 992 | 1010 | 1008 | 954 | 952 | 969 | 978 |
989 | 1001 | 1006 | 957 | 952 | 969 | 981 | 984 | 952 | 959 |
987 | 1006 | 1000 | 977 | 966 |
盡管上述數(shù)據(jù)都落在上,但龐加菜還是認(rèn)為面包師撒謊,根據(jù)所附信息,從概率角度說明理由
附:
①若,從X的取值中隨機(jī)抽取25個數(shù)據(jù),記這25個數(shù)據(jù)的平均值為Y,則由統(tǒng)計學(xué)知識可知:隨機(jī)變量
②若,則,,;
③通常把發(fā)生概率在0.05以下的事件稱為小概率事件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是正方形,底面,,、分別是、上的點(diǎn),且平面.
(Ⅰ)求證:為的中點(diǎn);
(Ⅱ)當(dāng)與平面所成的角最大時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)函數(shù)與函數(shù)圖象的公切線l經(jīng)過坐標(biāo)原點(diǎn)時,求實(shí)數(shù)a的取值集合;
(2)證明:當(dāng)時,函數(shù)有兩個零點(diǎn),且滿足.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了提高生產(chǎn)線的運(yùn)行效率,工廠對生產(chǎn)線的設(shè)備進(jìn)行了技術(shù)改造.為了對比技術(shù)改造后的效果,采集了生產(chǎn)線的技術(shù)改造前后各20次連續(xù)正常運(yùn)行的時間長度(單位:天)數(shù)據(jù),并繪制了如下莖葉圖:
(Ⅰ)(1)設(shè)所采集的40個連續(xù)正常運(yùn)行時間的中位數(shù),并將連續(xù)正常運(yùn)行時間超過和不超過的次數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
改造前 | ||
改造后 |
試寫出,,,的值;
(2)根據(jù)(1)中的列聯(lián)表,能否有的把握認(rèn)為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運(yùn)行時間有差異?
附:,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(Ⅱ)工廠的生產(chǎn)線的運(yùn)行需要進(jìn)行維護(hù).工廠對生產(chǎn)線的生產(chǎn)維護(hù)費(fèi)用包括正常維護(hù)費(fèi)、保障維護(hù)費(fèi)兩種對生產(chǎn)線設(shè)定維護(hù)周期為天(即從開工運(yùn)行到第天()進(jìn)行維護(hù).生產(chǎn)線在一個生產(chǎn)周期內(nèi)設(shè)置幾個維護(hù)周期,每個維護(hù)周期相互獨(dú)立.在一個維護(hù)周期內(nèi),若生產(chǎn)線能連續(xù)運(yùn)行,則不會產(chǎn)生保障維護(hù)費(fèi);若生產(chǎn)線不能連續(xù)運(yùn)行,則產(chǎn)生保障維護(hù)費(fèi).經(jīng)測算,正常維護(hù)費(fèi)為0.5萬元次;保障維護(hù)費(fèi)第一次為0.2萬元周期,此后每增加一次則保障維護(hù)費(fèi)增加0.2萬元.現(xiàn)制定生產(chǎn)線一個生產(chǎn)周期(以120天計)內(nèi)的維護(hù)方案:,,2,3,4.以生產(chǎn)線在技術(shù)改造后一個維護(hù)周期內(nèi)能連續(xù)正常運(yùn)行的頻率作為概率,求一個生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費(fèi)的分布列及期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:x2=2py(p>0),F為拋物線C的焦點(diǎn).以F為圓心,p為半徑作圓,與拋物線C在第一象限交點(diǎn)的橫坐標(biāo)為2.
(1)求拋物線C的方程;
(2)直線y=kx+1與拋物線C交于A,B兩點(diǎn),過A,B分別作拋物線C的切線l1,l2,設(shè)切線l1,l2的交點(diǎn)為P,求證:△PAB為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則下列判斷正確的是( )
A.函數(shù)的最小正周期為,在上單調(diào)遞增
B.函數(shù)的最小正周期為,在上單調(diào)遞增
C.函數(shù)的最小正周期為,在上單調(diào)遞增
D.函數(shù)的最小正周期為,在上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年女排世界杯(第13屆女排世界杯)是由國際排聯(lián)舉辦的賽事,比賽于2019年9月14日至9月29日在日本舉行,共有12支參賽隊伍.本次比賽啟用了新的排球用球_,已知這種球的質(zhì)量指標(biāo)ξ(單位:)服從正態(tài)分布.比賽賽制采取單循環(huán)方式,即每支球隊進(jìn)行11場比賽,最后靠積分選出最后冠軍.積分規(guī)則如下(比賽采取5局3勝制):比賽中以或取勝的球隊積3分,負(fù)隊積0分;而在比賽中以取勝的球隊積2分,負(fù)隊積1分.9輪過后,積分榜上的前2名分別為中國隊和美國隊,中國隊積26分,美國隊積22分.第10輪中國隊對抗塞爾維亞隊,設(shè)每局比賽中國隊取勝的概率為.
(1)如果比賽準(zhǔn)備了1000個排球,估計質(zhì)量指標(biāo)在內(nèi)的排球個數(shù)(計算結(jié)果取整數(shù))
(2)第10輪比賽中,記中國隊取勝的概率為,求出的最大值點(diǎn),并以作為p的值,解決下列問題.
(i)在第10輪比賽中,中國隊所得積分為X,求X的分布列;
(ii)已知第10輪美國隊積3分,判斷中國隊能否提前一輪奪得冠軍(第10輪過后,無論最后一輪即第11輪結(jié)果如何,中國隊積分最多)?若能,求出相應(yīng)的概率;若不能,請說明理由.
參考數(shù)據(jù):,則,
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)= (a∈R,e為自然對數(shù)的底數(shù))
(Ⅰ)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在 上無零點(diǎn),求a的最小值;
(Ⅲ)若對任意給定的x0∈(0,e],在(0,e]上總存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com