【題目】法國數(shù)學(xué)家龐加是個喜歡吃面包的人,他每天都會購買一個面包,面包師聲稱自己出售的每個面包的平均質(zhì)量是1000,上下浮動不超過50.這句話用數(shù)學(xué)語言來表達就是:每個面包的質(zhì)量服從期望為1000,標(biāo)準(zhǔn)差為50的正態(tài)分布.

1)假設(shè)面包師的說法是真實的,從面包師出售的面包中任取兩個,記取出的兩個面包中質(zhì)量大于1000的個數(shù)為,求的分布列和數(shù)學(xué)期望;

2)作為一個善于思考的數(shù)學(xué)家,龐加萊每天都會將買來的面包稱重并記錄,25天后,得到數(shù)據(jù)如下表,經(jīng)計算25個面包總質(zhì)量為24468.龐加萊購買的25個面包質(zhì)量的統(tǒng)計數(shù)據(jù)(單位:

981

972

966

992

1010

1008

954

952

969

978

989

1001

1006

957

952

969

981

984

952

959

987

1006

1000

977

966

盡管上述數(shù)據(jù)都落在上,但龐加菜還是認為面包師撒謊,根據(jù)所附信息,從概率角度說明理由

附:

,從X的取值中隨機抽取25個數(shù)據(jù),記這25個數(shù)據(jù)的平均值為Y,則由統(tǒng)計學(xué)知識可知:隨機變量

,則,,;

通常把發(fā)生概率在0.05以下的事件稱為小概率事件.

【答案】1)分布列見解析;期望為1(個)(2)詳見解析

【解析】

1)由題意知,的所有可能取值為0,12.可求得;.從而可求得的分布列和其數(shù)學(xué)期望.

2)記面包師制作的每個面包的質(zhì)量為隨機變量X.假設(shè)面包師沒有撒謊,則.由附①,從X的取值中隨機抽取25個數(shù)據(jù),記這25個數(shù)據(jù)的平均值為Y,則.可求得這25個數(shù)據(jù)的平均值為,而由由附②數(shù)據(jù)知,,由附③知,事件為小概率事件,可得結(jié)論.

1)由題意知,的所有可能取值為0,1,2.

;

.所以的分布列為:

0

1

2

P

所以(個).

2)記面包師制作的每個面包的質(zhì)量為隨機變量X.

假設(shè)面包師沒有撒謊,則.

根據(jù)附,從X的取值中隨機抽取25個數(shù)據(jù),記這25個數(shù)據(jù)的平均值為Y,

.

龐加萊記錄的25個面包質(zhì)量,相當(dāng)于從X的取值中隨機抽取了25個數(shù)據(jù),

25個數(shù)據(jù)的平均值為

由附數(shù)據(jù)知,

由附知,事件為小概率事件,

所以假設(shè)面包師沒有撒謊有誤,

所以龐加萊認為面包師撒謊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】唐朝的狩獵景象浮雕銀杯如圖1所示.其浮雕臨摹了國畫、漆繪和墓室壁畫,體現(xiàn)了古人的智慧與工藝.它的盛酒部分可以近似地看作是半球與圓柱的組合體(假設(shè)內(nèi)壁表面光滑,忽略杯壁厚度),如圖2所示.已知球的半徑為R,酒杯內(nèi)壁表面積為,設(shè)酒杯上部分(圓柱)的體積為,下部分(半球)的體積為,則

A.2B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)當(dāng),若函數(shù)的圖象有且僅有一個交點,的值(其中表示不超過的最大整數(shù),.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,為邊的中點,將沿直線翻轉(zhuǎn)成(平面).若分別為線段的中點,則在翻轉(zhuǎn)過程中,下列說法正確的是( )

A.與平面垂直的直線必與直線垂直

B.異面直線所成的角是定值

C.一定存在某個位置,使

D.三棱錐外接球半徑與棱的長之比為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】臺球運動已有五、六百年的歷史,參與者用球桿在臺上擊球.若和光線一樣,臺球在球臺上碰到障礙物后也遵從反射定律如圖,有一張長方形球臺ABCD,,現(xiàn)從角落A沿角的方向把球打出去,球經(jīng)2次碰撞球臺內(nèi)沿后進入角落C的球袋中,則的值為(

A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=ex+asinx,x(π,+),下列說法正確的是(

A.當(dāng)a=1時,f(x)(0,f(0))處的切線方程為2xy+1=0

B.當(dāng)a=1時,f(x)存在唯一極小值點x0且-1f(x0)0

C.對任意a0,f(x)(π,+)上均存在零點

D.存在a0f(x)(π,+)上有且只有一個零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽粒,古稱角黍,是端午節(jié)大家都會品嘗的食品.如圖,平行四邊形形狀的紙片是由六個邊長為2的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為_________;若該六面體內(nèi)有一球,當(dāng)該球體積最大時,球的表面積是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知多面體,其底面為矩形,四邊形為平行四邊形,平面平面,,的中點.

1)證明:平面;

2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二進制來源于我國古代的《易經(jīng)》,該書中有兩類最基本的符號:“─”﹣﹣,其中“─”在二進制中記作“1”,﹣﹣在二進制中記作“0”.如符號對應(yīng)的二進制數(shù)0112化為十進制的計算如下:01120×22+1×21+1×20310.若從兩類符號中任取2個符號進行排列,則得到的二進制數(shù)所對應(yīng)的十進制數(shù)大于2的概率為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案