精英家教網 > 高中數學 > 題目詳情

【題目】已知分別是雙曲線的左、右焦點,過點作垂直與軸的直線交雙曲線于,兩點,若為銳角三角形,則雙曲線的離心率的取值范圍是_______

【答案】

【解析】

根據雙曲線的通徑求得點的坐標,將三角形為銳角三角形,轉化為,即,將表達式轉化為含有離心率的不等式,解不等式求得離心率的取值范圍.

根據雙曲線的通徑可知,由于三角形為銳角三角形,結合雙曲線的對稱性可知,故,即,即,解得,故離心率的取值范圍是.

【點睛】

本小題主要考查雙曲線的離心率的取值范圍的求法,考查雙曲線的通徑,考查雙曲線的對稱性,考查化歸與轉化的數學思想方法,屬于中檔題.本小題的主要突破口在將三角形為銳角三角形,轉化為,利用列不等式,再將不等式轉化為只含離心率的表達式,解不等式求得雙曲線離心率的取值范圍.

型】填空
束】
17

【題目】已知命題:方程有兩個不相等的實數根;命題:不等式的解集為.若為真,為假,求實數的取值范圍.

【答案】

【解析】

根據“為真,為假”判斷出“為真,為假”,利用判別式列不等式分別求得為假、為真時的取值范圍,再取兩者的交集求得實數的取值范圍.

因為為真,為假,所以為真,為假

為假,,即:,∴ ,

為真,,即:,∴,

所以取交集為 .

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)a.

(1)f(0);

(2)探究f(x)的單調性,并證明你的結論;

(3)f(x)為奇函數,求滿足f(ax)<f(2)x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(1)求橢圓的標準方程;

(2)四邊形的頂點在橢圓上,且對角線過原點,若,求證;四邊形的面積為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓: 的右頂點、上頂點分別為、,坐標原點到直線的距離為,且,則橢圓的方程為( )

A. B. C. D.

【答案】D

【解析】

寫出直線的方程,利用原點到直線的距離,以及列方程組,解方程組求得的值,進而求得橢圓的方程.

橢圓右頂點坐標為,上頂點坐標為,故直線的方程為,即,依題意原點到直線的距離為,且,由此解得,故橢圓的方程為,故選D.

【點睛】

本小題主要考查過兩點的直線方程,考查點到直線的距離公式,考查橢圓標準方程的求法,考查了方程的思想.屬于中檔題.

型】單選題
束】
11

【題目】若實數,滿足,則的最小值是( )

A. 0 B. C. -6 D. -3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數其中為常數.

1,求曲線在點處的切線方程

2,求證:有且僅有兩個零點;

3為整數,且當,恒成立的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知:①函數;

②向量,且;

③函數的圖象經過點

請在上述三個條件中任選一個,補充在下面問題中,并解答.

已知_________________,且函數的圖象相鄰兩條對稱軸之間的距離為.

1)若,且,求的值;

2)求函數上的單調遞減區(qū)間.

注:如果選擇多個條件分別解答,按第一個解答計分.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為研究晝夜溫差大小與某疾病的患病人數之間的關系,經查詢得到今年上半年每月15號的晝夜溫差情況與患者的人數如表:

日期

115

215

315

415

515

615

晝夜溫差

10

11

10

10

9

7

患者人數

21

26

20

18

16

8

研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.

若選取的是1月與6月的兩組數據,請根據25月份的數據,求出y關于x的線性回歸方程

若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問中所得線性回歸方程是否理想?

參考公式:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知平面內動點到兩定點的距離之和為4.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)已知直線的傾斜角均為,直線過坐標原點且與曲線相交于, 兩點,直線過點且與曲線是交于, 兩點,求證:對任意, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓經過點,離心率為,左、右焦點分別為 .

(1)求橢圓的方程;

(2)若直線 與橢圓交于, 兩點,與以為直徑的圓交于, 兩點,且滿足,求直線的方程.

查看答案和解析>>

同步練習冊答案