【題目】已知橢圓C: (a>b>0)的離心率e= ,右頂點(diǎn)、上頂點(diǎn)分別為A,B,直線AB被圓O:x2+y2=1截得的弦長(zhǎng)為
(1)求橢圓C的方程;
(2)設(shè)過點(diǎn)B且斜率為k的動(dòng)直線l與橢圓C的另一個(gè)交點(diǎn)為M, =λ( ),若點(diǎn)N在圓O上,求正實(shí)數(shù)λ的取值范圍.
【答案】
(1)解:由 ,得 ,∴a=2b,
∴直線AB的方程為 ,即x+2y﹣2b=0,
圓心O(0,0)到直線AB的距離為d= ,∴ ,得b=1,
橢圓C的方程為
(2)解:設(shè)點(diǎn)M的坐標(biāo)為(x0,y0)(y0≠0),則點(diǎn)N的坐標(biāo)為(λx0,λ(y0+1)),
∴ ,得 ,
又 ,
∴ ,y0∈(﹣1,1),得 ,
∴正實(shí)數(shù)λ的取值范圍是[ )
【解析】(1)由題意離心率可得a=2b,設(shè)出AB所在直線方程,由圓心到直線的距離求得b,則橢圓方程可求;(2)設(shè)點(diǎn)M的坐標(biāo)為(x0 , y0)(y0≠0),由已知向量等式得點(diǎn)N的坐標(biāo)為(λx0 , λ(y0+1)),結(jié)合N在圓上,M在橢圓上,分離參數(shù)λ求解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí),掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C: (a>0,b>0)的離心率為2,右頂點(diǎn)為(1,0).
(1)求雙曲線C的方程;
(2)設(shè)直線y=-x+m與y軸交于點(diǎn)P,與雙曲線C的左、右支分別交于點(diǎn)Q,R,且=2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過點(diǎn).
(1)求橢圓的方程;
(2)設(shè)橢圓與軸的非負(fù)半軸交于點(diǎn),過點(diǎn)作互相垂直的兩條直線,分別交橢圓于兩點(diǎn),連接,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為正方形,四邊形為直角梯形,且, ,平面平面, .
()求證: 平面.
()若二面角為直二面角,
(i)求直線與平面所成角的大。
(ii)棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M過C(1,-1),D(-1,1)兩點(diǎn),且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設(shè)點(diǎn)P是直線3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓M的兩條切線,A,B為切點(diǎn),求四邊形PAMB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線 ,曲線C2的參數(shù)方程為: ,(θ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系.
(1)求C1 , C2的極坐標(biāo)方程;
(2)射線 與C1的異于原點(diǎn)的交點(diǎn)為A,與C2的交點(diǎn)為B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓C:的離心率為,其右焦點(diǎn)到橢圓C外一點(diǎn)的距離為,不過原點(diǎn)O的直線l與橢圓C相交于A,B兩點(diǎn),且線段AB的長(zhǎng)度為2.
1求橢圓C的方程;
2求面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 通項(xiàng)公式為 .
(Ⅰ)計(jì)算f(1),f(2),f(3)的值;
(Ⅱ)比較f(n)與1的大小,并用數(shù)學(xué)歸納法證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x﹣m|﹣1.
(1)若不等式f(x)≤2的解集為{x|﹣1≤x≤5},求實(shí)數(shù)m的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥t﹣2對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com