計算:月總傭金不超過100萬元的部分超過100萬元至200萬元的部分超過200萬元至300萬元的部分超過300萬元的部分銷售成本占傭金比例">
【題目】某房產銷售公司從登記購房的客戶中隨機選取了50名客戶進行調查,按他們購一套房的價格(萬元)分成6組:,,,,,得到頻率分布直方圖如圖所示.用頻率估計概率.
房產銷售公司每賣出一套房,房地產商給銷售公司的傭金如下表(單位:萬元):
房價區(qū)間 | ||||||
傭金收入 | 1 | 2 | 3 | 4 | 5 | 6 |
(1)求的值;
(2)求房產銷售公司賣出一套房的平均傭金;
(3)若該銷售公司平均每天銷售4套房,請估計公司月(按30天計)利潤(利潤=總傭金-銷售成本).
該房產銷售公司每月(按30天計)的銷售成本占總傭金的百分比按下表分段累計/span>計算:
月總傭金 | 不超過100萬元的部分 | 超過100萬元至200萬元的部分 | 超過200萬元至300萬元的部分 | 超過300萬元的部分 |
銷售成本占 傭金比例 |
科目:高中數(shù)學 來源: 題型:
【題目】將三棱錐與拼接得到如圖所示的多面體,其中,,,分別為,,,的中點,.
(1)當點在直線上時,證明:平面;
(2)若與均為面積為的等邊三角形,求該多面體體積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某品牌汽車4S店,對該品牌旗下的A型、B型、C型汽車進行維修保養(yǎng),汽車4S店記錄了100輛該品牌三種類型汽車的維修情況,整理得下表:
車型 | A型 | B型 | C型 |
頻數(shù) | 20 | 40 | 40 |
假設該店采用分層抽樣的方法從上述維修的100輛該品牌三種類型汽車中隨機取10輛進行問卷回訪.
(1)求A型、B型、C型各車型汽車抽取的數(shù)目;
(2)維修結束后這100輛汽車的司機采用“100分制”打分的方式表示對4S店的滿意度,按照大于等于80為優(yōu)秀,小于80為合格,得到如下列聯(lián)表:
優(yōu)秀 | 合格 | 合計 | |
男司機 | 10 | 38 | 48 |
女司機 | 25 | 27 | 52 |
合計 | 35 | 65 | 100 |
問能否在犯錯誤概率不超過0.01的前提下認為司機對4S店滿意度與性別有關系?請說明原因.
(參考公式:)
附表:
0.100 | 0.050 | 0.010 | 0.001 | |
K | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》中《方田》章有弧田面積計算問題,計算術曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面積計算公式為:弧田面積(弦乘矢+矢乘矢),弧田是由圓。ê喎Q為弧田的。┖鸵詧A弧的端點為端點的線段(簡稱 (弧田的弦)圍成的平面圖形,公式中“弦”指的是弧田的弦長,“矢”等于弧田的弧所在圓的半徑與圓心到弧田的弦的距離之差.現(xiàn)有一弧田,其弦長等于,其弧所在圓為圓,若用上述弧田面積計算公式計算得該弧田的面積為,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)若,求曲線與的交點坐標;
(2)過曲線上任一點作與夾角為30°的直線,交于點,且的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,側面ABCD為矩形,側面DEFG為平行四邊形,AB=1,AD=2,AG∥BF,AB⊥BF,AG=3,BF=5,二面角D﹣AB﹣F的大小為60°.
(1)證明,平面CDE⊥平面ADG
(2)求直線BE與平面ABCD所成角的大小
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù),a∈R),以O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2θ=2cosθ
(1)求直線l的普通方程及曲線C的直角坐標方程;
(2)若直線l過點P(1,1)且與曲線C交于AB兩點,求|PA|+|PB|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按200元/次收費,并注冊成為會員,對會員逐次消費給予相應優(yōu)惠,標準如下:
消費次第 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
收費比率 | 1 | 0.95 | 0.90 | 0.85 | 0.80 |
該公司注冊的會員中沒有消費超過5次的,從注冊的會員中,隨機抽取了100位進行統(tǒng)計,得到統(tǒng)計數(shù)據(jù)
如下:
消費次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 |
人數(shù) | 60 | 20 | 10 | 5 | 5 |
假設汽車美容一次,公司成本為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;
(2)以事件發(fā)生的頻率作為相應事件發(fā)生的概率, 設該公司為一位會員服務的平均利潤為元,求大于40的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)且a≠0).
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若函數(shù)f(x)的極小值為,試求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com