【題目】已知函數(shù)且a≠0).
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)的極小值為,試求a的值.
【答案】(1);(2).
【解析】
(1)由題意可知.,由此能求出曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程.
(2)當(dāng)a<-1時(shí),求出,解得,不成立;②當(dāng)a=-1時(shí),≤0在(0,+∞)上恒成立,f(x)在(0,+∞)單調(diào)遞減.f(x)無極小值;當(dāng)-1<a<0時(shí),極小值f(1)=-a-4,由題意可得,求出;當(dāng)a>0時(shí),極小值f(1)=-a-4.由此能求出a的值.
(1)函數(shù)f(x)=(2ax2+4x)lnx-ax2-4x(a∈R,且a≠0).
由題意可知.
∴曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為.
(Ⅱ)①當(dāng)a<-1時(shí),x變化時(shí)變化情況如下表:
x | 1 | (1,+∞) | |||
- | 0 | + | 0 | - | |
f(x) | ↘ | 極小值 | ↗ | 極大值 | ↘ |
此時(shí),解得,故不成立.
②當(dāng)a=-1時(shí),≤0在(0,+∞)上恒成立,所以f(x)在(0,+∞)單調(diào)遞減.
此時(shí)f(x)無極小值,故不成立.
③當(dāng)-1<a<0時(shí),x變化時(shí)變化情況如下表:
x | (0,1) | 1 | |||
- | 0 | + | 0 | - | |
f(x) | ↘ | 極小值 | ↗ | 極大值 | ↘ |
此時(shí)極小值f(1)=-a-4,由題意可得,
解得或.
因?yàn)?/span>-1<a<0,所以.
④當(dāng)a>0時(shí),x變化時(shí)變化情況如下表:
x | (0,1) | 1 | (1,+∞) |
- | 0 | + | |
f(x) | ↘ | 極小值 | ↗ |
此時(shí)極小值f(1)=-a-4,由題意可得,
解得或,故不成立.
綜上所述.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某房產(chǎn)銷售公司從登記購房的客戶中隨機(jī)選取了50名客戶進(jìn)行調(diào)查,按他們購一套房的價(jià)格(萬元)分成6組:,,,,,得到頻率分布直方圖如圖所示.用頻率估計(jì)概率.
房產(chǎn)銷售公司每賣出一套房,房地產(chǎn)商給銷售公司的傭金如下表(單位:萬元):
房價(jià)區(qū)間 | ||||||
傭金收入 | 1 | 2 | 3 | 4 | 5 | 6 |
(1)求的值;
(2)求房產(chǎn)銷售公司賣出一套房的平均傭金;
(3)若該銷售公司平均每天銷售4套房,請估計(jì)公司月(按30天計(jì))利潤(利潤=總傭金-銷售成本).
該房產(chǎn)銷售公司每月(按30天計(jì))的銷售成本占總傭金的百分比按下表分段累計(jì)/span>計(jì)算:
月總傭金 | 不超過100萬元的部分 | 超過100萬元至200萬元的部分 | 超過200萬元至300萬元的部分 | 超過300萬元的部分 |
銷售成本占 傭金比例 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,,是半徑為2的球面上的點(diǎn),,,點(diǎn)在上的射影為,則三棱錐體積的最大值是( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍.
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一個三棱錐,是圓的直徑,是圓上的點(diǎn),垂直圓所在的平面,,分別是棱,的中點(diǎn).
(1)求證:平面;
(2)若二面角是,,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一件剛出土的珍貴文物要在博物館大廳中央展出,需要設(shè)計(jì)各面是玻璃平面的無底正四棱柱將其罩住,罩內(nèi)充滿保護(hù)文物的無色氣體.已知文物近似于塔形,高1.8米,體積0.5立方米,其底部是直徑為0.9米的圓形,要求文物底部與玻璃罩底邊至少間隔0.3米,文物頂部與玻璃罩上底面至少間隔0.2米,氣體每立方米1000元,則氣體費(fèi)用最少為( )元
A.4500B.4000C.2880D.2380
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,其中實(shí)數(shù).
(1)求的最大值;
(2)若對于任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黃岡“一票通”景區(qū)旅游年卡,是由黃岡市旅游局策劃,黃岡市大別山旅游公司推出的一項(xiàng)惠民工程,持有旅游年卡一年內(nèi)可不限次暢游全市19家簽約景區(qū).為了解市民每年旅游消費(fèi)支出情況單位:百元,相關(guān)部門對已游覽某簽約景區(qū)的游客進(jìn)行隨機(jī)問卷調(diào)查,并把得到的數(shù)據(jù)列成如表所示的頻數(shù)分布表:
組別 | |||||
頻數(shù) | 10 | 390 | 400 | 188 | 12 |
求所得樣本的中位數(shù)精確到百元;
根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為市民的旅游費(fèi)用支出服從正態(tài)分布,若該市總?cè)丝跒?/span>750萬人,試估計(jì)有多少市民每年旅游費(fèi)用支出在7500元以上;
若年旅游消費(fèi)支出在百元以上的游客一年內(nèi)會繼續(xù)來該景點(diǎn)游玩現(xiàn)從游客中隨機(jī)抽取3人,一年內(nèi)繼續(xù)來該景點(diǎn)游玩記2分,不來該景點(diǎn)游玩記1分,將上述調(diào)查所得的頻率視為概率,且游客之間的選擇意愿相互獨(dú)立,記總得分為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.
參考數(shù)據(jù):,;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com