【題目】已知離心率為的橢圓的左頂點(diǎn)為A,且橢圓E經(jīng)過與坐標(biāo)軸不垂直的直線l與橢圓E交于CD兩點(diǎn),且直線AC和直線AD的斜率之積為.

I)求橢圓E的標(biāo)準(zhǔn)方程;

)求證:直線l過定點(diǎn).

【答案】I;(II)證明見解析.

【解析】

(Ⅰ)根據(jù)離心率,可得的關(guān)系,代入解析式,代入的坐標(biāo),即可求得,進(jìn)而得橢圓的標(biāo)準(zhǔn)方程.

(Ⅱ)設(shè)出直線的方程,將直線方程與橢圓方程聯(lián)立,根據(jù)有兩個不同的交點(diǎn)可知,利用韋達(dá)定理表示出,由直線AC和直線AD的斜率之積為可得關(guān)于的方程,即可求得的關(guān)系,代入直線方程即可求得所過定點(diǎn)的坐標(biāo);也可將方程設(shè)為,將直線方程與橢圓方程聯(lián)立,根據(jù)有兩個不同的交點(diǎn)可知,利用韋達(dá)定理表示出,由直線AC和直線AD的斜率之積為可得關(guān)于的方程,化簡求得的值,即可求得所過定點(diǎn)的坐標(biāo).

I

橢圓E經(jīng)過點(diǎn)

橢圓E的標(biāo)準(zhǔn)方程為

II)方法一:的方程為,

設(shè),

聯(lián)立方程組,

化簡得,

解得,

.

,

,

化簡可得:

(舍),滿足

直線l的方程為,

直線l經(jīng)過定點(diǎn)

方法二:設(shè)l的方程為,

設(shè),

聯(lián)立方程組,

化簡得,

解得:,

,

,

化簡可得:

或者(舍)滿足

直線l經(jīng)過定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,判斷函數(shù)的單調(diào)性;

2)若恒成立,求a的取值范圍;

3)已知,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面是邊長為的菱形,,點(diǎn)E是棱BC的中點(diǎn),,點(diǎn)P在平面ABCD的射影為O,F(xiàn)為棱PA上一點(diǎn).

1求證:平面平面BCF;

2平面PDE,,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)面是等邊三角形,且平面平面、E的中點(diǎn),,,,.

1)求證:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,平面,分別為,的中點(diǎn).

1)證明:平面;

2)若與平面所成的角為,,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的普通方程為.在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

1)寫出圓的參數(shù)方程和直線的直角坐標(biāo)方程;

2)設(shè)點(diǎn)上,點(diǎn)Q在上,求的最小值及此時點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求在點(diǎn)處的切線方程;

2)若不等式恒成立,求k的取值范圍;

3)求證:當(dāng)時,不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的四個頂點(diǎn)都在球的表面上,平面,,,,,則:(1)球的表面積為__________;(2)若的中點(diǎn),過點(diǎn)作球的截面,則截面面積的最小值是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,為其焦點(diǎn),為其準(zhǔn)線,過任作一條直線交拋物線于兩點(diǎn),、分別為、上的射影,的中點(diǎn),給出下列命題:

1;(2;(3;

4的交點(diǎn)的軸上;(5交于原點(diǎn).

其中真命題的序號為_________.

查看答案和解析>>

同步練習(xí)冊答案