【題目】在某海礁A處有一風暴中心,距離風暴中心A正東方向200km的B處有一艘輪船,正以北偏西a(a為銳角)角方向航行,速度為40km/h.已知距離風暴中心180km以內(nèi)的水域受其影響.

(1)若輪船不被風暴影響,求角α的正切值的最大值?

(2)若輪船航行方向為北偏西45°,求輪船被風暴影響持續(xù)多少時間?

【答案】(1)(2)

【解析】

(1)根據(jù)題意畫出圖形,結(jié)合圖形建立平面直角坐標系,利用直線與圓的方程求出直線與圓相切時的斜率,即可求出角α正切值的最大值;(2)求出直線被圓所截的弦長,再計算輪船被風暴影響持續(xù)的時間.

(1)根據(jù)題意畫出圖形,如圖所示,

則圓的方程為

設(shè)過點的直線方程為,

,

則圓心到直線的距離為,

化簡得,

解得

,

,

,

若輪船不被風暴影響,則角a的正切值的最大值為

(2)若輪船航行方向為北偏西,則直線方程為

則圓心到該直線的距離為,

弦長為

則輪船被風暴影響持續(xù)的時間為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,焦距為.斜率為k的直線l與橢圓M有兩個不同的交點A,B.

)求橢圓M的方程;

)若,求 的最大值;

)設(shè),直線PA與橢圓M的另一個交點為C,直線PB與橢圓M的另一個交點為D.C,D和點 共線,求k.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知等邊△ABC中,E,F(xiàn)分別為AB,AC邊的中點,N為BC邊上一點,且CN= BC,將△AEF沿EF折到△A′EF的位置,使平面A′EF⊥平面EF﹣CB,M為EF中點.

(1)求證:平面A′MN⊥平面A′BF;
(2)求二面角E﹣A′F﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線過點,圓.

(1)當直線與圓相切時,求直線的一般方程;

(2)若直線與圓相交,且弦長為,求直線的一般方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為棱AB,BC的中點,點F在側(cè)棱B1B上,且B1E⊥C1F,A1C1⊥B1C1

(1)求證:DE∥平面A1C1F;

(2)求證:B1E⊥平面A1C1F

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,在其定義域上既是偶函數(shù)又在(0,+∞)上單調(diào)遞減的是(
A.y=x2
B.y=x+1
C.y=﹣lg|x|
D.y=﹣2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題方程有兩個不等的實根;命題方程無實根,若“”為真,“”為假,則實數(shù)的取值范圍為___________.(寫成區(qū)間的形式)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】動點在拋物線上,過點垂直于軸,垂足為,設(shè).

(Ⅰ)求點的軌跡的方程;

(Ⅱ)若點上的動點,過點作拋物線的兩條切線,切點分別為,設(shè)點到直線的距離為,求的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 C: 的焦距為2,且過點,右焦點為.設(shè)A,B 是C上的兩個動點,線段 AB 的中點M 的橫坐標為,線段AB的中垂線交橢圓C于P,Q 兩點.

(1)求橢圓 C 的方程;

(2)設(shè)M點縱坐標為m,求直線PQ的方程,并求的取值范圍.

查看答案和解析>>

同步練習冊答案