【題目】已知橢圓 ,直線 為參數(shù)).

(1)寫出橢圓的參數(shù)方程及直線的普通方程;

(2),若橢圓上的點滿足到點的距離與其到直線的距離相等,求點的坐標.

【答案】1;(2

【解析】

試題本題主要考查極坐標方程與直角坐標方程的轉化、參數(shù)方程與普通方程的轉化等基礎知識,意在考查考生的分析問題解決問題的能力、轉化能力、運算求解能力. 第一問,利用橢圓的參數(shù)方程,直接得到將直線的參數(shù)方程消參,得到直線的普通方程;第二問,由于P點在橢圓上,結合參數(shù)方程設出P點坐標,利用兩點間的距離公式,及點到直線的距離公式,再相等,解出,從而得到P點坐標.

試題解析:(Cθ為參數(shù)),lxy904

)設,

,

P到直線l的距離

|AP|d3sinθ4cosθ5,又sin2θcos2θ1,得,

10

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,當時,,且對任意的實數(shù),等式恒成立,若數(shù)列滿足,且,則的值為(

A.4037B.4038C.4027D.4028

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代名詞“芻童”原來是草堆的意思,關于“芻童”體積計算的描述,《九章算術》注曰:“倍上袤,下袤從之,亦倍下袤,上袤從之,各以其廣乘之,并,以高乘之,皆六而一.”其計算方法是:將上底面的長乘二,與下底面的長相加,再與上底面的寬相乘,將下底面的長乘二,與上底面的長相加,再與下底面的寬相乘;把這兩個數(shù)值相加,與高相乘,再取其六分之一.已知一個“芻童”的下底面是周長為18的矩形,上底面矩形的長為3,寬為2,“芻童”的高為3,則該“芻童”的體積的最大值為

A. B. C. 39 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的導函數(shù)零點的個數(shù);

(2)若函數(shù)的最小值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一年一度的“雙十一”網(wǎng)絡購物節(jié)來了,某工廠網(wǎng)上直營店決定對某商品進行一次評估.該商品原來每件售價為20元,年銷售7萬件.為了抓住“雙十一”的大好商機,擴大該商品的影響力,提高年銷售量.工廠決定引進新生產(chǎn)線對該商品進行技術.升級,并提高定價到.新生產(chǎn)線投入需要固定成本萬元,變化成本萬元,另外需要萬元作為新媒體宣傳費用.問:當該商品技術升級后的銷售量至少應達到多少萬件時,才可能使升級后的年銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為創(chuàng)建國家級文明城市,某城市號召出租車司機在高考期間至少參加一次“愛心送考”,該城市某出租車公司共200名司機,他們參加“愛心送考”的次數(shù)統(tǒng)計如圖所示.

(1)求該出租車公司的司機參加“愛心送考”的人均次數(shù);

(2)從這200名司機中任選兩人,設這兩人參加送考次數(shù)之差的絕對值為隨機變量,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃投資A、B兩種金融產(chǎn)品,根據(jù)市場調查與預測,A產(chǎn)品的利潤與投資量成正比例,其關系如圖1,B產(chǎn)品的利潤與投資量的算術平方根成正比例,其關系如圖2(注:利潤與投資量的單位:萬元).

(1)分別將A、B兩產(chǎn)品的利潤表示為投資量的函數(shù)關系式;

(2)該公司已有10萬元資金,并全部投入A、B兩種產(chǎn)品中,問:怎樣分配這10萬元投資,才能使公司獲得最大利潤?其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓,其中,焦距為2,過點的直線l與橢圓C交于點A,B,點B在A,M之間.又線段AB的中點的橫坐標為,且.

(1)求橢圓C的標準方程.

(2)求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如下圖所示,在三棱錐PABC中,PA⊥底面ABC,PAAB,∠ABC=60°,∠BCA=90°,點D,E分別在棱PB,PC上,且DEBC.

(1)求證:BC⊥平面PAC

(2)當DPB的中點時,求AD與平面PAC所成的角的正弦值;

(3)是否存在點E,使得二面角ADEP為直二面角?并說明理由.

查看答案和解析>>

同步練習冊答案