【題目】某公司計(jì)劃購(gòu)買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.在購(gòu)進(jìn)機(jī)器時(shí),可以一次性額外購(gòu)買幾次維修服務(wù),每次維修服務(wù)費(fèi)用200元,另外實(shí)際維修一次還需向維修人員支付小費(fèi),小費(fèi)每次50元.在機(jī)器使用期間,如果維修次數(shù)超過購(gòu)機(jī)時(shí)購(gòu)買的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費(fèi)用500元,無需支付小費(fèi).現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)一次性購(gòu)買幾次維修服務(wù),為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計(jì)表:

維修次數(shù)

8

9

10

11

12

頻數(shù)

10

20

30

30

10

表示1臺(tái)機(jī)器在三年使用期內(nèi)的維修次數(shù),表示1臺(tái)機(jī)器在維修上所需的費(fèi)用(單位:元),表示購(gòu)機(jī)的同時(shí)購(gòu)買的維修服務(wù)次數(shù).

1)若,求的函數(shù)解析式;

2)若要求維修次數(shù)不大于的頻率不小于0.8,求的最小值.

【答案】1.(2的最小值為11

【解析】

1)由題意可知,將原問題轉(zhuǎn)化為分段函數(shù)求解析式的問題,即可確定函數(shù)的解析式;

2)由維修次數(shù)不大于10”的頻率為,維修次數(shù)不大于11”頻率為,即可得出維修次數(shù)不大于的頻率不小于0.8,求的最小值.

解:(1)根據(jù)題意得:,

2)因?yàn)?/span>維修次數(shù)不大于10”的頻率為,

維修次數(shù)不大于11”頻率為

所以若要求維修次數(shù)不大于的頻率不小于0.8,則的最小值為11

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若三角形三邊長(zhǎng)都是整數(shù)且至少有一個(gè)內(nèi)角為,則稱該三角形為完美三角形.有關(guān)完美三角形有以下命題:

1)存在直角三角形是完美三角形

2)不存在面積是整數(shù)的完美三角形

3)周長(zhǎng)為12完美三角形中面積最大為;

4)若兩個(gè)完美三角形有兩邊對(duì)應(yīng)相等,且它們面積相等,則這兩個(gè)完美三角形全等.

以上真命題有______.(寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知從橢圓的一個(gè)焦點(diǎn)看兩短軸端點(diǎn)所成視角為,且橢圓經(jīng)過.

(1)求橢圓的方程;

(2)是否存在實(shí)數(shù),使直線與橢圓有兩個(gè)不同交點(diǎn),且為坐標(biāo)原點(diǎn)),若存在,求出的值.不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)的最小值為2,求的值;

2)當(dāng)時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,側(cè)棱底面,點(diǎn)的中點(diǎn),作,交于點(diǎn).

1)求證:平面;

2)求證:;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱中,是棱的中點(diǎn).

1)證明:直線平面

2)若,,證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),給出下列四個(gè)結(jié)論:

① 函數(shù)的最小正周期是;

② 函數(shù)在區(qū)間上是減函數(shù);

③ 函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱;

④ 函數(shù)的圖像可由函數(shù)的圖像向右平移個(gè)單位,再向下平移1個(gè)單位得到.其中正確結(jié)論的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,的中點(diǎn),.

1)求證:平面;

2)點(diǎn)在線段上,,試確定的值,使平面

3)若平面,平面平面,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn),,直線相交于點(diǎn),且它們的斜率之積為,記動(dòng)點(diǎn)的軌跡為曲線。

(1)求曲線的方程;

(2)過點(diǎn)的直線與曲線交于、兩點(diǎn),是否存在定點(diǎn),使得直線斜率之積為定值,若存在,求出坐標(biāo);若不存在,請(qǐng)說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案