【題目】現(xiàn)給出以下四個(gè)命題:
①已知中,角A,B,C的對(duì)邊為a,b,c,當(dāng),,時(shí),滿足條件的三角形共有1個(gè);
②已知中,角A,B,C的對(duì)邊為a,b,c,若三角形,這個(gè)三角形的最大角是;
③設(shè)是兩條不同的直線,,是兩個(gè)不同的平面,若,,則;
④設(shè)是兩條不同的直線,,是兩個(gè)不同的平面,若,,則
其中正確的序號(hào)是__________(寫出所有正確說(shuō)法的序號(hào)).
【答案】②④
【解析】
根據(jù)正弦定理判斷①;根據(jù)余弦定理可判斷②;根據(jù)空間中線面、線線位置關(guān)系可判斷③;根據(jù)面面平行的性質(zhì)可判斷④.
①當(dāng),,時(shí),由正弦定理可得,所以,故三角形不存在,①錯(cuò);
②若三角形中,,可設(shè),
所以,因此,故②正確;
③因?yàn)?/span>是兩條不同的直線,,是兩個(gè)不同的平面,若,,則或與異面,也可以相交;故③錯(cuò);
④設(shè)是兩條不同的直線,,是兩個(gè)不同的平面,若,,由面面平行的性質(zhì),即可得出結(jié)果,故④正確;
故答案為②④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn)M和N分別在直線y=mx和y=﹣mx(m>0)上運(yùn)動(dòng),且|MN|=2,動(dòng)點(diǎn)p滿足: (O為坐標(biāo)原點(diǎn)),點(diǎn)P的軌跡記為曲線C. (I)求曲線C的方程,并討論曲線C的類型;
(Ⅱ)過點(diǎn)(0,1)作直線l與曲線C交于不同的兩點(diǎn)A、B,若對(duì)于任意m>1,都有∠AOB為銳角,求直線l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了名觀眾進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖,將日均收看該體育節(jié)目時(shí)間不低于分鐘的觀眾稱為體育迷.
(1)若日均收看該體育節(jié)目時(shí)間在內(nèi)的觀眾中有兩名女性,現(xiàn)從日均收看時(shí)間在內(nèi)的觀眾中抽取兩名進(jìn)行調(diào)查,求這兩名觀眾恰好一男一女的概率;
(2)若抽取人中有女性人,其中女體育迷有人,完成答題卡中的列聯(lián)表并判斷能否在犯錯(cuò)概率不超過的前提下認(rèn)為是體育迷與性別有關(guān)系嗎?
附表及公式:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列中,在直線.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令,數(shù)列的前n項(xiàng)和為.
(ⅰ)求;
(ⅱ)是否存在整數(shù)λ,使得不等式(-1)nλ< (n∈N)恒成立?若存在,求出λ的取值的集合;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處取得極值,且在處的切線的斜率為-3.(Ⅰ)求的解析式;
(Ⅱ)若過點(diǎn)A(2,)可作曲線的三條切線,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)若存在,使不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為 ,(t為參數(shù)),直線l2的參數(shù)方程為 ,(m為參數(shù)).設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.
(Ⅰ)寫出C的普通方程;
(Ⅱ)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ)﹣ =0,M為l3與C的交點(diǎn),求M的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:cm).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).(12分)
(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學(xué)期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
(。┰囌f(shuō)明上述監(jiān)控生產(chǎn)過程方法的合理性;
(ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計(jì)算得 = =9.97,s= = ≈0.212,其中xi為抽取的第i個(gè)零件的尺寸,i=1,2,…,16.
用樣本平均數(shù) 作為μ的估計(jì)值 ,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值 ,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除( ﹣3 +3 )之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)μ和σ(精確到0.01).
附:若隨機(jī)變量Z服從正態(tài)分布N(μ,σ2),則P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, ≈0.09.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com