下列函數(shù)中在區(qū)間(-1,1)上既是奇函數(shù)又是增函數(shù)的為( 。
A、y=|x+1|
B、y=sinx
C、y=2x+2-x
D、y=lnx
考點(diǎn):函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)奇函數(shù)的定義,及正弦函數(shù)的單調(diào)性即可找出正確選項(xiàng).
解答: 解:y=|x+1|不是奇函數(shù),比如x=1時(shí),y=2,x=-1時(shí),y=0;
y=sinx是奇函數(shù),根據(jù)正弦函數(shù)y=sinx的單調(diào)性知,該函數(shù)在(-1,1)上是增函數(shù),∴B正確;
y=2x+2-x是偶函數(shù);
y=lnx不是奇函數(shù).
故選B.
點(diǎn)評(píng):考查奇函數(shù)的定義,以及正弦函數(shù)的單調(diào)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正六邊形ABCDEF的邊長為2,分別以AB,AE所在直線為x,y軸建立直角邊坐標(biāo)系,用斜二測畫法得到水平放置的正六邊形ABCDEF的直觀圖A′B′C′D′E′F′,則六邊形A′B′C′D′E′F′的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,已知圓ρ=
2
cos(θ+
π
4
)
與直線
2
ρsin(θ+
π
4
)=a
相切,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),
xf′(x)-f(x)
x2
>0,且f(-2)=0,則不等式
f(x)
x
>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商品降價(jià)10%后,欲恢復(fù)原價(jià),則應(yīng)提價(jià)( 。
A、9%
B、10%
C、11%
D、
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寧夏某市2008年至2012年新建商品住宅每平方米的均價(jià)y(單位:千元)的數(shù)據(jù)如下表:
年份20082009201020112012
年份代號(hào)t12345
每平米均價(jià)y23.14.56.57.9
(Ⅰ)求y關(guān)于t的線性回歸方程;
(Ⅱ)判斷變量t與y之間是正相關(guān)還是負(fù)相關(guān);
(Ⅲ)利用(Ⅰ)中的回歸方程,分析從2008年到2012年該市新建商品住宅每平方米均價(jià)的變化情況,并預(yù)測該市到2015年新建商品住宅每平方米的價(jià)格.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為
?
b
=
n
i=1
(yi-
.
y
)(ti-
.
t
)
n
i=1
(ti-
.
t
)
2
=
n
i=1
tiyi-n
.
t
.
y
n
i=1
t
2
i
-n
.
t
2
,
?
a
=
.
y
-
?
b
.
t

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,與過點(diǎn)P(1,2)且斜率為-2的直線l相交所得的弦恰好被P評(píng)分,則此橢圓的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=log3(9x)•log3(3x),且
1
9
≤x≤9.
(1)求f(3)的值;
(2)若令t=log3x,求實(shí)數(shù)t的取值范圍;
(3)將y=f(x)表示成以t(t=log3x)為自變量的函數(shù),并由此求函數(shù)y=f(x)的最大值與最小值及與之對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
1
x

(1)判斷函數(shù)f(x)的奇偶性,并畫出函數(shù)f(x)的簡圖;
(2)求出函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)g(x)=x+
1
x+1
(x≥2)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案