【題目】已知平行四邊形,,平面平面,三角形為等邊三角形,.,分別為線段,的中點(diǎn).

1)求證:平面平面;

2)求證:平面平面;

3)求直線與平面所成角的正切值.

【答案】1)證明見解析;(2)證明見解析;(3

【解析】

1)根據(jù),分別為線段的中點(diǎn),得到,由線面平行的判定定理得到平面,根據(jù)題意得到是平行四邊形,有,由線面平行的判定定理得到平面,然后由面面平行的判定定理證明.

2)根據(jù)平面平面,三角形為等邊三角形,得到平面,從而有平面平面,根據(jù)平面平面得證.

3)根據(jù)平行四邊形,,易得,有平面,得到即為直線與平面所成角,然后在中,求得,得到,再由求解.

1)因?yàn)?/span>,分別為線段,的中點(diǎn),

所以,平面

又因?yàn)?/span>,,,

所以,,

所以是平行四邊形,

所以,平面

又因?yàn)?/span>,

所以平面平面.

2)平面平面,三角形為等邊三角形,

平面,平面

所以平面平面

因?yàn)槠矫?/span>平面

所以平面平面;

3)已知平行四邊形,,

所以,又平面平面;

所以平面,

所以即為直線與平面所成角,

中,,

所以

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)討論函數(shù)在區(qū)間上的單調(diào)性;

2)已知,若對(duì)任意,有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】火箭少女101的新曲《卡路里》受到了廣大聽眾的追捧,歌詞積極向上的體現(xiàn)了人們對(duì)于健康以及完美身材的渴望.據(jù)有關(guān)數(shù)據(jù)顯示,成年男子的體脂率在14%-25%之間.幾年前小王重度肥胖,在專業(yè)健身訓(xùn)練后,身材不僅恢復(fù)正常,且走上美體路線.通過整理得到如下數(shù)據(jù)及散點(diǎn)圖.

健身年數(shù)

1

2

3

4

5

6

體脂率(有分比)

32

20

12

8

6.4

4.4

3.4

3

2.5

2.1

1.9

1.5

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)模型更適宜作為體脂率關(guān)于健身年數(shù)的回歸方程模型(給出選擇即可)

2)根據(jù)(1)的判斷結(jié)果與題目中所給數(shù)據(jù),建立的回歸方程.(保留一位小數(shù))

3)再堅(jiān)持3年,體脂率可達(dá)到多少.

參考公式:

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

(1)求不等式的解集;

(2)若關(guān)于的不等式能成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在10件產(chǎn)品中,有3件一等品,4件二等品,3件三等品。從這10件產(chǎn)品中任取3件,求:

I) 取出的3件產(chǎn)品中一等品件數(shù)X的分布列和數(shù)學(xué)期望;

II) 取出的3件產(chǎn)品中一等品件數(shù)多于二等品件數(shù)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某貧困地區(qū)幾個(gè)丘陵的外圍有兩條相互垂直的直線型公路,,以及鐵路線上的一條應(yīng)開鑿的直線穿山隧道,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路,和山區(qū)邊界的直線型公路,以,所在的直線分別為軸,軸,建立平面直角坐標(biāo)系,如圖所示,山區(qū)邊界曲線為,設(shè)公路與曲線相切于點(diǎn).

1)設(shè)公路軸,軸分別為兩點(diǎn),若公路的斜率為-1,求的長(zhǎng);

2)當(dāng)公路的長(zhǎng)度最短時(shí),設(shè)公路軸,軸分別為,兩點(diǎn),并測(cè)得四邊形中,,,千米,千米,求應(yīng)開鑿的隧道的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達(dá)到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實(shí)線分別為調(diào)整后的函數(shù)圖象.

給出下列四種說(shuō)法:

①圖(2)對(duì)應(yīng)的方案是:提高票價(jià),并提高成本;

②圖(2)對(duì)應(yīng)的方案是:保持票價(jià)不變,并降低成本;

③圖(3)對(duì)應(yīng)的方案是:提高票價(jià),并保持成本不變;

④圖(3)對(duì)應(yīng)的方案是:提高票價(jià),并降低成本.

其中,正確的說(shuō)法是____________.(填寫所有正確說(shuō)法的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若恒成立,求實(shí)數(shù)的取值范圍;

2)若函數(shù)有兩個(gè)不同的零點(diǎn),,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)是拋物線內(nèi)一點(diǎn),是拋物線的焦點(diǎn),是拋物線上任意一點(diǎn),且已知的最小值為2.

1)求拋物線的方程;

2)拋物線上一點(diǎn)處的切線與斜率為常數(shù)的動(dòng)直線相交于,且直線與拋物線相交于、兩點(diǎn).問是否有常數(shù)使?

查看答案和解析>>

同步練習(xí)冊(cè)答案