【題目】求滿足下列條件的最小正整數(shù)t,對于任何凸n邊形,只要,就一定存在三點,使的面積不大于凸n邊形面積的.

【答案】6

【解析】

先證明一個引理.

引理 對任何凸六邊形,都存在,使,其中,S為凸六邊形的面積.

引理的證明:如圖,設(shè)交于點P、QR(可能重合),聯(lián)結(jié).

由于6個三角形的面積之和不大于S,其中必有一個三角形的面積不大于.

回到原題.

t=3、4、5時,正三角形、正方形、正五邊形分別不符合條件,所以,.

下面證明:當時,對任何凸n邊形,都存在,使

其中,S為凸n邊形的面積.

實際上,當n=6時,由引理,結(jié)論成立.

設(shè)n=k時,結(jié)論成立.

n=k+1時,聯(lián)結(jié).

如果,則結(jié)論成立.

如果,則.

由歸納假設(shè),必有,使.

結(jié)論成立.

綜上所述,t的最小值為6.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知直線與曲線相切于兩點,則對于函數(shù),以下結(jié)論成立的是(

A.3個極大值點,2個極小值點B.2個零點

C.2個極大值點,沒有極小值點D.沒有零點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個圓錐形量杯的高為厘米,其母線與軸的夾角為

(1)求該量杯的側(cè)面積;

(2)若要在該圓錐形量杯的一條母線上,刻上刻度,表示液面到達這個刻度時,量杯里的液體的體積是多少.當液體體積是立方厘米時,刻度的位置與頂點之間的距離是多少厘米(精確到厘米)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于任意給定的無理數(shù)及實數(shù),圓周上的有理點的個數(shù)情況是()

A. 至多一個 B. 至多兩個 C. 至少兩個,個數(shù)有限 D. 無數(shù)多個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若正四面體PQMN的頂點分別在給定的四面體ABCD的面上,每個面上恰有一個點,那么,( ).

A. 當四面體ABCD是正四面體時,正四面體PQMN有無數(shù)個,否則,正四面體PQMN只有一個

B. 當四面體ABCD是正四面體時,正四面體PQMN有無數(shù)個,否則,正四面體PQMN不存在

C. 當四面體ABCD的三組對棱分別相等時,正四面體PQMN有無數(shù)個,否則,正四面體PQMN只有一個

D. 對任何四面體ABCD,正四面體PQMN都有無數(shù)個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體的8個頂點、12條棱的中點、6個側(cè)面的中心點、1個體的中心點,27個點中,共球面的8點組的個數(shù)是().

A. 4462 B. 4584 C. 4590 D. 4602

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx2+cx+dx=1處取極小值,x=3處取極大值,且函數(shù)圖象在(2f(2))處的切線與直線x-5y=0平行.

1)求實數(shù)abc的值;

2)設(shè)函數(shù)f(x)=0有三個不相等的實數(shù)根,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中實數(shù)a為常數(shù).

(I)a=-l時,確定的單調(diào)區(qū)間:

(II)f(x)在區(qū)間e為自然對數(shù)的底數(shù))上的最大值為-3,求a的值;

(Ⅲ)a=-1時,證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在地面上同一地點觀測遠方勻速垂直上升的熱氣球,在上午10點整熱氣球的仰角是到上午10點20分的仰角變成.請利用下表判斷到上午11點整時,熱氣球的仰角最接近哪個度數(shù)( )

0.5

0.559

0.629

0.643

0.656

0.669

0.682

0.695

0.707

0.866

0.829

0.777

0.766

0.755

0.743

0.731

0.719

0.707

0.577

0.675

0.810

0.839

0.869

0.900

0.933

0.966

1.0

A. B. C. D.

查看答案和解析>>

同步練習冊答案