【題目】如圖所示,已知直線與曲線相切于兩點(diǎn),則對于函數(shù),以下結(jié)論成立的是( )
A.有3個極大值點(diǎn),2個極小值點(diǎn)B.有2個零點(diǎn)
C.有2個極大值點(diǎn),沒有極小值點(diǎn)D.沒有零點(diǎn)
【答案】AD
【解析】
根據(jù)圖象可以判斷出的正負(fù)性、得出恒成立,判定B錯誤,D正確;作出與直線平行的所有的切線,即可觀察得到與的大小關(guān)系的不同區(qū)間,進(jìn)而得出的正負(fù)區(qū)間,得出的單調(diào)性,進(jìn)而得到的極值情況,從而判定A,C的正確與否.
由題意可知:直線與曲線相切于兩點(diǎn),所以方程有兩個不相等的實(shí)數(shù)根,由圖象可知;,因此有,
所以,因此函數(shù)沒有零點(diǎn),故選項(xiàng)B錯誤,選項(xiàng)D正確;
,
作出與直線平行的所有切線,各切線與函數(shù)的切點(diǎn)的橫坐標(biāo)依次為在處的導(dǎo)數(shù)都等于,
在上,,單調(diào)遞增,
在上,單調(diào)遞減,
因此函數(shù)有三個極大值點(diǎn),有兩個極小值點(diǎn),所以選項(xiàng)A正確,選項(xiàng)C錯誤.
故選:AD
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知函數(shù),求函數(shù)在時的值域;
(2)函數(shù)有兩個不同的極值點(diǎn),,
①求實(shí)數(shù)的取值范圍;
②證明:.
(本題中可以參與的不等式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間和的極值;
(2)對于任意的,,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),且),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)寫出曲線和直線的直角坐標(biāo)方程;
(2)若直線與軸交點(diǎn)記為,與曲線交于,兩點(diǎn),Q在x軸下方,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極坐標(biāo)系的極點(diǎn),軸的正半軸為極軸.已知曲線的極坐標(biāo)方程為,是上一動點(diǎn),,點(diǎn)的軌跡為.
(1)求曲線的極坐標(biāo)方程,并化為直角坐標(biāo)方程;
(2)若點(diǎn),直線的參數(shù)方程(為參數(shù)),直線與曲線的交點(diǎn)為,當(dāng)取最小值時,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從1~2010中選出總和為1006779的1005個數(shù),且這1005個數(shù)中任意兩數(shù)之和都不等于2011.
(1)證明: 為定值;
(2)當(dāng)取最小值時,求 中所有小于1005的數(shù)之和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,a為實(shí)數(shù).
(1)當(dāng)函數(shù)的圖像在上與x軸有唯一的公共點(diǎn)時,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)時,求函數(shù)在上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的最小正整數(shù)t,對于任何凸n邊形,只要,就一定存在三點(diǎn),使的面積不大于凸n邊形面積的.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com