【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸,與直角坐標系取相同的單位長度建立極坐標系,曲線的極坐標方程為.

(1)化曲線的方程為普通方程,并說明它們分別表示什么曲線;

(2)設曲線軸的一個交點的坐標為,經過點作斜率為1的直線,直線交曲線兩點,求線段的長.

【答案】(1)曲線的普通方程為,表示焦點在軸上的橢圓,曲線的普通方程: ,表示以為圓心,半徑為的圓; (2).

【解析】【試題分析】(1)依據(jù)題設條件,運用參數(shù)方程、極坐標方程與普通直角坐標之間的關系求解;(2)依據(jù)題設運用參數(shù)方程中的參數(shù)分析求解:

(1)曲線的普通方程為,表示焦點在軸上的橢圓,

,得,整理得,

即為曲線的普通方程,表示以為圓心,半徑為的圓.

(2)令,得,所以,直線,

將曲線的參數(shù)方程代入直線方程得:

整理得,即,或,

所以, ,即為所求.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形, 平面 , 是棱上的一個動點, 的中點.

(Ⅰ)求證:平面平面;

(Ⅱ)若,求證: 平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中.

(1)討論的單調性;

(2)若在區(qū)間內恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓C 上一點,點P到橢圓C的兩個焦點的距離之和為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設A,B是橢圓C上異于點P的兩點,直線PA與直線交于點M,

是否存在點A,使得?若存在,求出點A的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某知名品牌汽車深受消費者喜愛,但價格昂貴。某汽車經銷商退出三種分期付款方式銷售該品牌汽車,并對近期100位采用上述分期付款的客戶進行統(tǒng)計分析,得到如下的柱狀圖。已知從三種分期付款銷售中,該經銷商每銷售此品牌汽車1輛所獲得的利潤分別是1萬元,2萬元,3萬元,F(xiàn)甲乙兩人從該汽車經銷商處,采用上述分期付款方式各購買此品牌汽車一輛。以這100 位客戶所采用的分期付款方式的頻率代替1位客戶采用相應分期付款方式的概率。

(Ⅰ)求甲乙兩人采用不同分期付款方式的概率;

(Ⅱ)(單位:萬元)為該汽車經銷商從甲乙兩人購車中所獲得的利潤,求的分布列和期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某食品公司研發(fā)生產一種新的零售食品,從產品中抽取100件作為樣本,測量這些產品的一項質量指標值,由測量結果得到如圖頻率分布直方圖:

(Ⅰ)求直方圖中的值;

(Ⅱ)由頻率分布直方圖可以認為,這種產品的質量指標值服從正態(tài)分布,試計算數(shù)據(jù)落在上的概率.

參考數(shù)據(jù):若,則,

(Ⅲ)設生產成本為,質量指標為,生產成本與質量指標之間滿足函數(shù)關系假設同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,試計算生產該食品的平均成本.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,側棱底面 垂直于, , 是棱的中點.

(Ⅰ)求證: 平面

(Ⅱ)求平面與平面所成的二面角的余弦值;

(Ⅲ)設點是直線上的動點, 與平面所成的角為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的四棱錐中,四邊形為正方形, 平面,且分別為的中點, .

證明:(1)平面;

,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】當今信息時代,眾多高中生也配上了手機.某校為研究經常使用手機是否對學習成績有影響,隨機抽取高三年級50名理科生的一次數(shù)學周練成績,并制成下面的列聯(lián)表:

及格

不及格

合計

很少使用手機

20

6

26

經常使用手機

10

14

24

合計

30

20

50

(1)判斷是否有的把握認為經常使用手機對學習成績有影響?

(2)從這50人中,選取一名很少使用手機的同學記為甲和一名經常使用手機的同學記為乙,解一道數(shù)學題,甲、乙獨立解出此題的概率分別為,且 ,若,則此二人適合結為學習上互幫互助的“學習師徒”,記為兩人中解出此題的人數(shù),若的數(shù)學期望,問兩人是否適合結為“學習師徒”?

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

參考公式及數(shù)據(jù): ,其中.

查看答案和解析>>

同步練習冊答案