將一個(gè)邊長分別為4和6的矩形卷成一個(gè)圓柱形,則此圓柱的最大體積是
 
考點(diǎn):旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))
專題:計(jì)算題,空間位置關(guān)系與距離
分析:我們可以分圓柱的底面周長為4,高為6和圓柱的底面周長為6,高為4,兩種情況進(jìn)行討論,最后綜合討論結(jié)果,即可得到答案.
解答: 解:若圓柱的底面周長為4,則底面半徑R=
2
π
,h=6,
此時(shí)圓柱的體積V=π•R2•h=
24
π

若圓柱的底面周長為6,則底面半徑R=
3
π
,h=4,
此時(shí)圓柱的體積V=π•R2•h=
36
π

∴圓錐的最大體積為:
36
π

故答案為:
36
π
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是圓柱的體積,其中根據(jù)已知條件分別確定圓柱的底面周長和高是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)x2+x-2+(x2-3x+2)i(x∈R)是復(fù)數(shù)4-20i的共軛復(fù)數(shù),則實(shí)數(shù)x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos(2x-
π
6
)+1的對(duì)稱中心為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
①若集合A={(x,y)|y=x-1},B={(x,y)|y=x2-1},則A∩B={-1,0,1};
②圓柱的側(cè)面展開圖是一個(gè)邊長為2和4的矩形,則圓柱的體積為
8
π
;
③若兩直線ax+2y-1=0與x+(a-1)y+a2=0平行,則a的值為-1或2;
④若單調(diào)函數(shù)f(x)在區(qū)間[a,b]上有意義,且f(a)f(b)<0,則f(x)在區(qū)間(a,b)上有唯一的零點(diǎn);
⑤已知f(x)=|2x-1|的圖象和直線y=a只有一個(gè)公共點(diǎn),則a的取值范圍是a≥1.
其中錯(cuò)誤的是
 
.(只填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

比較大小
3
-1
 
10
-8(填“>”或“<”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面程序運(yùn)行后,a=
 
,b=
 
,c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線x2-y2=2的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:cos79°cos56°-cos11°cos34°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條不同直線m、l,兩個(gè)不同平面α、β,給出下列命題:
①若l∥α,則l平行于α內(nèi)的所有直線;
②若m?α,l?β且l⊥m,則α⊥β;
③若l?β,l⊥α,則α⊥β;
④若m?α,l?β且α∥β,則m∥l;
其中正確命題的個(gè)數(shù)為( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案