【題目】三棱錐中,頂點在底面的投影為的內(nèi)心,三個側(cè)面的面積分別為12,16,20,且底面面積為24,則三棱錐的內(nèi)切球的表面積為(

A.B.C.D.

【答案】C

【解析】

若設(shè)在底面的投影為,分別作于點,于點于點,則.依題意,的內(nèi)心,則,故,再利用三個側(cè)面的面積分別為1216,20,可得,從而求出,然后求內(nèi)切圓半徑,再求出三棱錐的體積,再用,可求出內(nèi)切球的半徑,從而可求出內(nèi)切球的表面積.

解法一:不妨設(shè)

設(shè)在底面的投影為,分別作于點,于點,于點,則.依題意,的內(nèi)心,則,故,

,,

所以,所以

所以,解得,所以

設(shè)內(nèi)切圓半徑為,則,即,解得,故

,得

所以,

所以

設(shè)三棱錐的內(nèi)切球的半徑為,則

,即,解得,所以三棱錐的內(nèi)切球的表面積為,故選C

解法二:不妨設(shè)

設(shè)在底面的投影為,分別作于點,于點,于點,則.依題意,的內(nèi)心,則

,且,記為

所以,故,

所以,所以

,

,

所以,所以

所以,解得,所以

設(shè)內(nèi)切圓半徑為,由直角三角形內(nèi)切圓半徑公式得

由題意知三棱錐內(nèi)切球的球心在上,設(shè)為點.由條件知點也在的角平分線上,所以內(nèi)切球半徑,所以三棱錐的內(nèi)切球的表面積為,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)曲線的普通方程和直線的直角坐標(biāo)方程;

2)求曲線上的點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)統(tǒng)計某射擊運動員隨機(jī)射擊一次命中目標(biāo)的概率為,為估計該運動員射擊4次恰好命中3次的概率,現(xiàn)采用隨機(jī)模擬的方法,先由計算機(jī)產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),用01,2表示沒有擊中,用34,5,6,78,9表示擊中,以4個隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):

95977424,7610,4281,75200293,71409857,03474373,

0371,62332616,80456011,36618638,7815,14575550

根據(jù)以上數(shù)據(jù),則可估計該運動員射擊4次恰有3次命中的概率為( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以為極點,軸正半軸為極軸建立極坐標(biāo)系.已知曲線的參數(shù)方程為為參數(shù),),曲線的極坐標(biāo)方程為,點的一個交點,其極坐標(biāo)為.設(shè)射線與曲線相交于,兩點,與曲線相交于,兩點.

1)求,的值;

2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高三年級在返校復(fù)學(xué)后,為了做好疫情防護(hù)工作,一位防疫督察員要將2盒完全相同的口罩和3盒完全相同的普通醫(yī)用口罩全部分配給3個不同的班,每個班至少分得一盒,則不同的分法種數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省年開始將全面實施新高考方案.在門選擇性考試科目中,物理、歷史這兩門科目采用原始分計分;思想政治、地理、化學(xué)、生物這4門科目采用等級轉(zhuǎn)換賦分,將每科考生的原始分從高到低劃分為,,個等級,各等級人數(shù)所占比例分別為、、、,并按給定的公式進(jìn)行轉(zhuǎn)換賦分.該省組織了一次高一年級統(tǒng)一考試,并對思想政治、地理、化學(xué)、生物這4門科目的原始分進(jìn)行了等級轉(zhuǎn)換賦分.

1)某校生物學(xué)科獲得等級的共有10名學(xué)生,其原始分及轉(zhuǎn)換分如下表:

原始分

91

90

89

88

87

85

83

82

轉(zhuǎn)換分

100

99

97

95

94

91

88

86

人數(shù)

1

1

2

1

2

1

1

1

現(xiàn)從這10名學(xué)生中隨機(jī)抽取3人,設(shè)這3人中生物轉(zhuǎn)換分不低于分的人數(shù)為,求的分布列和數(shù)學(xué)期望;

2)假設(shè)該省此次高一學(xué)生生物學(xué)科原始分服從正態(tài)分布.若,令,則,請解決下列問題:

①若以此次高一學(xué)生生物學(xué)科原始分等級的最低分為實施分層教學(xué)的劃線分,試估計該劃線分大約為多少分?(結(jié)果保留為整數(shù))

②現(xiàn)隨機(jī)抽取了該省名高一學(xué)生的此次生物學(xué)科的原始分,若這些學(xué)生的原始分相互獨立,記為被抽到的原始分不低于分的學(xué)生人數(shù),求取得最大值時的值.

附:若,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且.

(Ⅰ)求的值;

(Ⅱ)在函數(shù)的圖象上任意取定兩點,記直線的斜率為,求證:存在唯一,使得成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽(yù),要求在交付用戶前每件產(chǎn)品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產(chǎn)品,且每件產(chǎn)品檢驗合格與否相互獨立.若每件產(chǎn)品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產(chǎn)品每個()一組進(jìn)行分組檢驗,如果某一組產(chǎn)品檢驗合格,則說明該組內(nèi)產(chǎn)品均合格,若檢驗不合格,則說明該組內(nèi)有不合格產(chǎn)品,再對該組內(nèi)每一件產(chǎn)品單獨進(jìn)行檢驗,如此,每一組產(chǎn)品只需檢驗一次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗次數(shù)為

1的分布列及其期望;

2)(i)試說明,當(dāng)越大時,該方案越合理,即所需平均檢驗次數(shù)越少;

ii)當(dāng)時,求使該方案最合理時的值及件該產(chǎn)品的平均檢驗次數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正態(tài)分布有極其廣泛的實際背景,生產(chǎn)與科學(xué)實驗中很多隨機(jī)變量的概率分布都可以近似地用正態(tài)分布來描述.例如,同一種生物體的身長、體重等指標(biāo).隨著“綠水青山就是金山銀山”的觀念不斷的深入人心,環(huán)保工作快速推進(jìn),很多地方的環(huán)境出現(xiàn)了可喜的變化.為了調(diào)查某水庫的環(huán)境保護(hù)情況,在水庫中隨機(jī)捕撈了100條魚稱重.經(jīng)整理分析后發(fā)現(xiàn),魚的重量x(單位:kg)近似服從正態(tài)分布,如圖所示,已知.

(Ⅰ)若從水庫中隨機(jī)捕撈一條魚,求魚的重量在內(nèi)的概率;

(Ⅱ)(ⅰ)從捕撈的100條魚中隨機(jī)挑出6條魚測量體重,6條魚的重量情況如表.

重量范圍(單位:kg

條數(shù)

1

3

2

為了進(jìn)一步了解魚的生理指標(biāo)情況,從6條魚中隨機(jī)選出3條,記隨機(jī)選出的3條魚中體重在內(nèi)的條數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;

(ⅱ)若將選剩下的94條魚稱重做標(biāo)記后立即放生.兩周后又隨機(jī)捕撈1000條魚,發(fā)現(xiàn)其中帶有標(biāo)記的有2.為了調(diào)整生態(tài)結(jié)構(gòu),促進(jìn)種群的優(yōu)化,預(yù)備捕撈體重在內(nèi)的魚的總數(shù)的40%進(jìn)行出售,試估算水庫中魚的條數(shù)以及應(yīng)捕撈體重在內(nèi)的魚的條數(shù).

查看答案和解析>>

同步練習(xí)冊答案