【題目】某地西紅柿從2月1日起開始上市.通過(guò)市場(chǎng)調(diào)查,得到西紅柿種植成本(單位:元/)與上市時(shí)間(單位:天)的數(shù)據(jù)如下表:
由表知,體現(xiàn)與數(shù)據(jù)關(guān)系的最佳函數(shù)模型是( )
A.B.C.D.
【答案】B
【解析】
由提供的數(shù)據(jù)可知,描述西紅柿種植成本與上市時(shí)間的變化關(guān)系函數(shù)不可能是單調(diào)函數(shù),故可求得答案.
由提供的數(shù)據(jù)可知,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;
則描述西紅柿種植成本與上市時(shí)間的變化關(guān)系函數(shù)不可能是常數(shù)函數(shù),也不可能是單調(diào)函數(shù),
對(duì)于,描述的是一次函數(shù)模型,是單調(diào)函數(shù),不滿足題意,故舍去;
對(duì)于,描述的是一元二次函數(shù)模型,在對(duì)稱軸的左右兩邊單調(diào)性不同,符合題意;
對(duì)于,是指數(shù)型函數(shù)模型,是單調(diào)函數(shù),不滿足題意,故舍去;
對(duì)于,是對(duì)數(shù)型函數(shù)模型,是單調(diào)函數(shù),不滿足題意,故舍去.
綜上排除、和選項(xiàng).
故選:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),的最小正期為.
(1)求的單調(diào)增區(qū)間;
(2)方程在上有且只有一個(gè)解,求實(shí)數(shù)的取值范圍;
(3)是否存在實(shí)數(shù)滿足對(duì)任意,都存在,使得成立.若存在,求的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=,g(x)=xlnx.
(Ⅰ)若函數(shù)g(x)的圖象在(1,0)處的切線l與函數(shù)f(x)的圖象相切,求實(shí)數(shù)k的值;
(Ⅱ)當(dāng)k=0時(shí),證明:f(x)+g(x)>0;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)經(jīng)過(guò)短短幾年的發(fā)展,員工近百人.不知何因,人員雖然多了,但員工的實(shí)際工作效率還不如從前.年月初,企業(yè)領(lǐng)導(dǎo)按員工年齡從企業(yè)抽選位員工交流,并將被抽取的員工按年齡(單位:歲)分為四組:第一組,第二組,第三組,第四組,且得到如下頻率分布直方圖:
(1)求實(shí)數(shù)的值;
(2)若用簡(jiǎn)單隨機(jī)抽樣方法從第二組、第三組中再隨機(jī)抽取人作進(jìn)一步交流,求“被抽取得人均來(lái)自第二組”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空氣質(zhì)量指數(shù)(簡(jiǎn)稱:)是定量描述空氣質(zhì)量狀況的無(wú)量綱指數(shù),空氣質(zhì)量按照大小分為六級(jí):為優(yōu),為良,為輕度污染,為中度污染,為重度污染,為嚴(yán)重污染.下面記錄了北京市天的空氣質(zhì)量指數(shù),根據(jù)圖表,下列結(jié)論錯(cuò)誤的是( )
A. 在北京這天的空氣質(zhì)量中,按平均數(shù)來(lái)考察,最后天的空氣質(zhì)量?jī)?yōu)于最前面天的空氣質(zhì)量 B. 在北京這天的空氣質(zhì)量中,有天達(dá)到污染程度
C. 在北京這天的空氣質(zhì)量中,12月29日空氣質(zhì)量最好 D. 在北京這天的空氣質(zhì)量中,達(dá)到空氣質(zhì)量?jī)?yōu)的天數(shù)有天
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確的是( )
A. 若為真命題,則為真命題 B. 若則恒成立
C. 命題“”的否定是“” D. 命題“若則”的逆否命題是“若,則”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)若存在,對(duì)任意,使得恒成立,求實(shí)數(shù)的取值范圍;
(3)已知函數(shù)區(qū)間上的最小值為1,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=,下列結(jié)論中錯(cuò)誤的是
A. , f()=0
B. 函數(shù)y=f(x)的圖像是中心對(duì)稱圖形
C. 若是f(x)的極小值點(diǎn),則f(x)在區(qū)間(-∞,)單調(diào)遞減
D. 若是f(x)的極值點(diǎn),則()=0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com